353 On the fluctuation characteristic of velocity and static pressure in two dimensional turbulent jet

2008 ◽  
Vol 2008.57 (0) ◽  
pp. 221-222
Author(s):  
Takaaki KATO ◽  
Yasuhiko SAKAI ◽  
Kouji NAGATA ◽  
Takashi KUBO ◽  
Tomohide NIIMI
1963 ◽  
Vol 16 (4) ◽  
pp. 620-632 ◽  
Author(s):  
D. J. Maull ◽  
L. F. East

The flow inside rectangular and other cavities in a wall has been investigated at low subsonic velocities using oil flow and surface static-pressure distributions. Evidence has been found of regular three-dimensional flows in cavities with large span-to-chord ratios which would normally be considered to have two-dimensional flow near their centre-lines. The dependence of the steadiness of the flow upon the cavity's span as well as its chord and depth has also been observed.


1964 ◽  
Vol 15 (1) ◽  
pp. 1-28 ◽  
Author(s):  
R. Knystautas

SummaryThe possibility of obtaining two-dimensional turbulent jet flow from a series of closely-spaced uniform holes in line has been investigated both theoretically and experimentally. The case studied was that of a jet discharging into still fluid of similar density at incompressible speeds. Such a quasi-two-dimensional jet is a particular example of a multiple-interfering jet group.


2016 ◽  
Vol 139 (1) ◽  
Author(s):  
A. Hildebrandt ◽  
F. Schilling

The present paper deals with the numerical and experimental investigation of the effect of return channel (RCH) dimensions of a centrifugal compressor stage on the aerodynamic performance. Three different return channel stages were investigated, two stages comprising three-dimensional (3D) return channel blades and one stage comprising two-dimensional (2D) RCH vanes. The analysis was performed regarding both the investigation of overall performance (stage efficiency, RCH total pressure loss coefficient) and detailed flow-field performance. For detailed experimental flow-field investigation at the stage exit, six circumferentially traversed three-hole probes were positioned downstream the return channel exit in order to get two-dimensional flow-field information. Additionally, static pressure wall measurements were taken at the hub and shroud pressure and suction side (SS) of the 2D and 3D return channel blades. The return channel system overall performance was calculated by measurements of the circumferentially averaged 1D flow field downstream the diffuser exit and downstream the stage exit. Dependent on the type of return channel blade, the numerical and experimental results show a significant effect on the flow field overall and detail performance. In general, satisfactory agreement between computational fluid dynamics (CFD)-prediction and test-rig measurements was achieved regarding overall and flow-field performance. In comparison with the measurements, the CFD-calculated stage performance (efficiency and pressure rise coefficient) of all the 3D-RCH stages was slightly overpredicted. Very good agreement between CFD and measurement results was found for the static pressure distribution on the RCH wall surfaces while small CFD-deviations occur in the measured flow angle at the stage exit, dependent on the turbulence model selected.


1972 ◽  
Vol 94 (3) ◽  
pp. 226-232
Author(s):  
D. O. Rockwell

A theory is developed to describe the inviscid core in two-dimensional unstalled diffusers with suction (extraction) on the diverging walls. Experimental wall static pressure distributions and streamline patterns agree well with those predicted theoretically. Under appropriate extraction conditions, a stagnation region is located downstream of the diverging wall extraction station. Experimental verification of the streamline patterns and of the location of this stagnation region was achieved via hydrogen bubble visualization. In addition, the possible stall conditions, which result if improper extraction is employed, are described qualitatively.


Sign in / Sign up

Export Citation Format

Share Document