probe measurements
Recently Published Documents


TOTAL DOCUMENTS

1238
(FIVE YEARS 107)

H-INDEX

56
(FIVE YEARS 5)

Author(s):  
Nirbhav Singh Chopra ◽  
Yevgeny Raitses ◽  
Shurik Yatom ◽  
Jorge M Muñoz Burgos

Abstract . In the atmospheric pressure anodic carbon arc, ablation of the anode serves as a feedstock of carbon for production of nanomaterials. It is known that the ablation of the graphite anode in this arc can have two distinctive modes with low and high ablation rates. The transition between these modes is governed by the power deposition at the arc attachment to the anode and depends on the gap between the anode and the cathode electrodes. Probe measurements combined with optical emission spectroscopy (OES) are used to analyze the voltage drop between the arc electrodes. These measurements corroborated previous predictions of a positive anode sheath (i.e. electron attracting sheath) in this arc, which appears in both low and high ablation modes. However, the positive anode sheath was determined to be ~3-8 V, significantly larger than ~0.5 V predicted by previous models. Thus, there are apparently other physical mechanisms not considered by these models that force the anode sheath to be electron attracting in both ablation regimes. Another key result is a relatively low electron temperature (~ 0.6 eV) obtained from OES using a collisional radiative model. This result partially explains a higher arc voltage (~ 20 V) required to sustain the arc current of 50-70 A than predicted by existing simulations of this discharge.


2021 ◽  
Vol 2064 (1) ◽  
pp. 012029
Author(s):  
I V Lopatin ◽  
Yu H Akhmadeev ◽  
S S Kovalsky ◽  
D Yu Ignatov

Abstract This paper presents the results of a study of an electron-ion-plasma alitization system using two arc plasma generators: a gas plasma generator based on a non-self-sustained arc discharge with a thermionic cathode “PINK” and a gas-metal plasma generator based on an arc discharge with a cathode spot. The system for discharges supplying and biasing of the samples assumes two sub-modes of operation: the ion cleaning sub-mode (ion sub-mode) and the sub-mode of samples electron heating (electron sub-mode), thus realizing the “elion” mode of the system operation. During the experiments, both the dependences of the average values of currents and voltages of discharges burning and probe measurements of the instantaneous plasma parameters values in both system operating sub-modes were investigated. It is shown, that the electron sub-mode of system operation is characterized by an increased burning voltage, which is caused by the formation of a positive anode drop of more than 10 V in the plasmas. Such a potential distribution in the discharges ensures effective heating of the samples by the discharges plasmas electron component.


2021 ◽  
Vol 16 (11) ◽  
pp. T11006
Author(s):  
E.N. Sidorov ◽  
V.I. Batkin ◽  
A.V. Burdakov ◽  
I.A. Ivanov ◽  
K.N. Kuklin ◽  
...  

Abstract A system of four-electrode Langmuir probes developed for the GOL-NB multiple-mirror trap is discussed. The system is used for studies of a low-temperature start plasma (1019–1020 m-3, 5 eV) that fills the device during the initial phase of the experiment. The probe allows simultaneous measurements of plasma density, electron temperature and radial electric field. The accuracy of the probe measurements is also discussed.


2021 ◽  
Vol 2021 (3) ◽  
pp. 57-69
Author(s):  
D.N. Lazuchenkov ◽  
◽  
N.M. Lazuchenkov ◽  

The aim of this work is to estimate the reliability of extracting the plasma electron density and temperature and ionic composition from the current-voltage (I-V) characteristic of an isolated probe system with cylindrical electrodes. An earlier proposed mathematical model of current collection by the probe system at positive bias potentials and an arbitrary ratio of the electrode areas is analyzed. The model is supplemented with a formula that determines, with an accuracy of several percent, the value of the bias potential at which the probe is under the plasma potential and the I-V characteristic splits into a transition and an electronic region. The analytical dependence of the bias potential on the plasma parameters and the ratio of the electrode areas made it possible to formalize the procedures for determining and assessing the reliability of the extracted plasma parameters using the regions of their strongest effect on the collected probe current. Parametric studies of the effect of the plasma parameters on the probe current were carried out for conditions close to measurements in the ionosphere. The paper demonstrates the feasibility of partitioning the sought-for plasma parameters into the regions of their strongest and weakest effect on the probe current in the range of the bias potentials considered. The problem of plasma parameter identification is formulated on the basis of a comparison of the probe current and the measured I-V characteristic in the L2 theoretical approximation. To each parameter there corresponds an objective function of its own, which differs in the domain of definition and the ratio of the electrode areas used in I-V characteristic measurements. Based on this formulation of the inverse problem in L2, estimates of the reliability of identification of the parameters of a plasma with two ion species are obtained depending on the errors of the model and probe measurements. The results obtained may be used in ionospheric plasma diagnostics.


2021 ◽  
Vol 308-309 ◽  
pp. 108610
Author(s):  
Chihiro Naruke ◽  
Wenyi Sheng ◽  
Rong Zhou ◽  
Scott B. Jones

Toxins ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 666
Author(s):  
Corentin Fournier ◽  
Eva Riehle ◽  
Daniel R. Dietrich ◽  
David Schleheck

Recurring blooms of filamentous, red-pigmented and toxin-producing cyanobacteria Planktothrix rubescens have been reported in numerous deep and stratified prealpine lakes, with the exception of Lake Constance. In a 2019 and 2020 Lake Constance field campaign, we collected samples from a distinct red-pigmented biomass maximum below the chlorophyll-a maximum, which was determined using fluorescence probe measurements at depths between 18 and 20 m. Here, we report the characterization of these deep water red pigment maxima (DRM) as cyanobacterial blooms. Using 16S rRNA gene-amplicon sequencing, we found evidence that the blooms were, indeed, contributed by Planktothrix spp., although phycoerythrin-rich Synechococcus taxa constituted most of the biomass (>96% relative read abundance) of the cyanobacterial DRM community. Through UPLC–MS/MS, we also detected toxic microcystins (MCs) in the DRM in the individual sampling days at concentrations of ≤1.5 ng/L. Subsequently, we reevaluated the fluorescence probe measurements collected over the past decade and found that, in the summer, DRM have been present in Lake Constance, at least since 2009. Our study highlights the need for a continuous monitoring program also targeting the cyanobacterial DRM in Lake Constance, and for future studies on the competition of the different cyanobacterial taxa. Future studies will address the potential community composition changes in response to the climate change driven physiochemical and biological parameters of the lake.


2021 ◽  
Vol 36 (28) ◽  
pp. 2150204
Author(s):  
P. K. Suresh

The expected tensor-to-scalar ratio estimate of the upcoming CMB mission probe measurements may establish a lower value of the ratio than the currently obtained value. It can be described in terms of a single field chaotic inflation model along with the curvaton or quantum gravity or their combined effect. Consequently, the role of quantum gravity or curvaton in the dynamics of the early universe may not be ruled out. The curvaton scenario and quantum gravity effect can be tested experimentally. The upcoming CMB missions can validate the curvaton scenario and quantum gravity experimentally.


2021 ◽  
pp. 1-11
Author(s):  
Roman Frank ◽  
Christian Wacker ◽  
Reinhard Niehuis

Abstract Variable inlet guide vanes (VIGV) are the main control element to adjust the flow rate of industrial centrifugal compressors by customized pre-swirl in the inlet plane of the impeller. The efficient working range of VIGVs is however restricted due to open flow separation occurring at critical stagger angles. In order to overcome the narrow limitations of current blade geometries and to enhance the operating range of the compressor, split blades consisting of a separate front and tail blade segment proved to be particularly promising in previous linear-cascade measurements. Each blade segment is thereby individually staggered. This enables a gradual flow deflection along the chord length. Secondary flow losses, however, were not considered in the previous investigations with linear-cascades. To highlight the potential of the split blade concept under more application-oriented conditions including all relevant flow effects, highly resolved field measurements were conducted in the wake of annular VIGVs. Four different blade configurations, a customary reference case and three variations of the split blade with full, partial and missing sealing in the gap between the segments, were assessed using five-hole probe measurements. By investigating a wide range of stagger angles, the coverage of the full low-loss working range of the VIGV could be ensured. Especially, the fully sealed split blade configuration proved its capacity to extend the efficient operational range significantly.


Sign in / Sign up

Export Citation Format

Share Document