Droplet Evaporation of Non-azeotropic and Azeotropic Mixture on a Superheated Surface

2019 ◽  
Vol 2019.68 (0) ◽  
pp. 410
Author(s):  
Takashi SUZUKI ◽  
Akihiko MITSUISHI ◽  
Tomoya OKAMOTO ◽  
Kenzo KITAMURA
2018 ◽  
Author(s):  
A. Alperen Gunay ◽  
Marisa Gnadt ◽  
Soumyadip Sett ◽  
Junho Oh ◽  
Nenad Miljkovic

Author(s):  
Abgail Paula Pinheiro ◽  
João Marcelo Vedovoto

Author(s):  
KSENIA A. Batishcheva ◽  
ATLANT E. Nurpeiis

With an increase in the productivity of power equipment and the miniaturization of its components, the use of traditional thermal management systems becomes insufficient. There is a need to develop drip heat removal systems, based on phase transition effects. Cooling with small volumes of liquids is a promising technology for microfluidic devices or evaporation chambers, which are self-regulating systems isolated from the external environment. However, the heat removal during evaporation of droplets into a limited volume is a difficult task due to the temperature difference in the cooling device and the concentration of water vapor that is unsteady in time depending on the mass of the evaporated liquid. This paper presents the results of an experimental study of the distilled water microdrops’ (5-25 μl) evaporation on an aluminum alloy AMg6 with the temperatures of 298-353 K in an isolated chamber (70 × 70 × 30 mm3) in the presence of heat supply to its lower part. Based on the analysis of shadow images, the changes in the geometric dimensions of evaporating drops were established. They included the increase in the contact diameter, engagement of the contact line due to nano roughening and chemical composition inhomogeneous on the surface (90-95% of the total evaporation time) of the alloy and a decrease in the contact diameter. The surface temperature and droplet volume did not affect the sequence of changes in the geometric dimensions of the droplets. It was found that the droplet volume has a significant effect on the evaporation time at relatively low substrate temperatures. The results of the analysis of droplet evaporation rates and hygrometer readings have shown that reservoirs with salt solutions can be used in isolated chambers to control the concentration of water vapor. The water droplets evaporation time was determined. The analysis of the time dependences of the evaporation rate has revealed that upon the evaporation of droplets in an isolated chamber under the conditions of the present experiment, the air was not saturated with water vapor. The latter did not affect the evaporation rate.


Author(s):  
Haonan Li ◽  
Rong Chen ◽  
Xun Zhu ◽  
Qiang Liao ◽  
Dingding Ye ◽  
...  

2021 ◽  
Vol 6 (3) ◽  
Author(s):  
Michael Ewetola ◽  
Rodrigo Ledesma-Aguilar ◽  
Marc Pradas
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document