Active Vibration Control using Cantilever Beam of Smart Matrix Composite with Embedded Shape Memory Alloy

2003 ◽  
Vol 2003 (0) ◽  
pp. 895-896
Author(s):  
Teruko AOKI ◽  
Akira SHIMAMOTO
2003 ◽  
Vol 17 (08n09) ◽  
pp. 1744-1749 ◽  
Author(s):  
T. Aoki ◽  
A. Shimamoto

In this paper, epoxy matrix composite beams with embedded TiNi (SMA: Shape Memory Alloy) fiber are applied to enhance the strength and fracture toughness of the machinery components. It is also well known that SMA shows the remarkable changes of stiffness and damping ratio between martensite at lower temperature and austenite at high temperature. A shape recovery force is associated with inverse phase transformation of SMA. The effects of heating with current and pre-strain in TiNi fiber of SMA on vibration characteristics are experimentally investigated. The active vibration control is achieved by controlling the current and pre-strain.


2012 ◽  
Vol 226-228 ◽  
pp. 252-256
Author(s):  
Xin Yang ◽  
Jie Hong ◽  
Yan Hong Ma ◽  
Da Yi Zhang

The feasibility of using shape memory alloy (SMA) as actuators to control the vibration of a double-decker cantilever beam is demonstrated in the paper. A new and reliable form of SMA actuator is proposed in this study that no debonding and softening occurs even the maximum shear is generated by recovery force of the SMA wires. The magnitude and stability of the recovery force are tested when the SMA wires with the prestrain are heated cyclically. According to the simulation results, the four vibrational modes (three bending and one torsional) of cantilever beam can be changed simultaneously. Finally the vibrational response excited by pulsing and sinusoidal signal is successfully suppressed by using the SMA actuators in the experiments.


2001 ◽  
Vol 67 (654) ◽  
pp. 294-299 ◽  
Author(s):  
Akira SHIMAMOTO ◽  
Yasubumi FURUYA ◽  
Nobuyuki KUROSAWA ◽  
Hiroyuki ABE

Sign in / Sign up

Export Citation Format

Share Document