scholarly journals Cryogenic Temperature and Water Absorption Effects on Mechanical Properties and Fatigue Strength of Carbon Fiber Reinforced Plastics.

1993 ◽  
Vol 59 (566) ◽  
pp. 2278-2285 ◽  
Author(s):  
Kenjiro Komai ◽  
Kohji Minoshima ◽  
Tadaaki Ishikawa
2019 ◽  
Vol 54 (14) ◽  
pp. 1797-1806 ◽  
Author(s):  
Masayuki Nakada ◽  
Yasushi Miyano

The formulation for time- and temperature-dependent statistical static and fatigue strengths for carbon fiber reinforced plastics laminates is newly proposed based on the physically serious role of resin viscoelasticity as the matrix of carbon fiber reinforced plastics. In this study, this formulation is applied to the tensile strength along the longitudinal direction of unidirectional carbon fiber reinforced plastics constituting the most important data for the reliable design of carbon fiber reinforced plastics structures which are exposed to elevated temperatures for a significant period of their operative life. The statistical distribution of the static and fatigue strengths under tension loading along the longitudinal direction of unidirectional carbon fiber reinforced plastics were measured at various temperatures by using resin-impregnated carbon fiber reinforced plastics strands as specimens. The master curves for the fatigue strength as well as the static strength of carbon fiber reinforced plastics strand were constructed based on the time–temperature superposition principle for the matrix resin viscoelasticity. The long-term fatigue strength of carbon fiber reinforced plastics strand can be predicted by using the master curve of fatigue strength.


2019 ◽  
Vol 3 (3) ◽  
pp. 85 ◽  
Author(s):  
El-Ghaoui ◽  
Chatelain ◽  
Ouellet-Plamondon ◽  
Mathieu

Carbon fiber reinforced plastics (CFRP) are appreciated for their high mechanical properties and lightness. Due to their heterogeneous nature, CFRP machining remains delicate. Damages are caused on the material and early tool wear occurs. The present study aims to evaluate the effects of fillers on CFRP machinability and mechanical behavior. CFRP laminates were fabricated by the vacuum assisted resin transfer molding (VARTM) process, using a modified epoxy resin. Three fillers (organoclay, hydrocarbon wax, and wetting agent) were mixed with the resin prior to the laminate infusion. Milling tests were performed with polycrystalline diamond (PCD) tools, equipped with thermocouples on their teeth. Machinability was then studied through the cutting temperatures and forces. Tensile, flexural, and short-beam tests were carried out on all samples to investigate the effects of fillers on mechanical properties. Fillers, especially wax, allowed us to observe an improvement in machinability. The best improvement was observed with 1% wax and 2% organoclay, which allowed a significant decrease in the cutting forces and the temperatures, and no deteriorations were seen on mechanical properties. These results demonstrate that upgrades to CFRP machining through the addition of nanoclays and wax is a path to explore.


Sign in / Sign up

Export Citation Format

Share Document