scholarly journals Determination of vortex shedding frequency and drag for karman vortex street (1st report, Vortex shedding frequency)

1985 ◽  
Vol 51 (471) ◽  
pp. 3685-3688
Author(s):  
Kensaku IMAICHI ◽  
Eiichi TADA
1973 ◽  
Vol 61 (1) ◽  
pp. 199-205 ◽  
Author(s):  
D. Weihs

An inviscid Kármán-type vortex-shedding model is employed to show that multiple modes of vortex streets are possible, for flow around a given obstacle. This is in confirmation of various experimental observations in recent years, which were challenged by opposing claims that these were due to experimental inaccuracies.


Author(s):  
Akira Nakazawa ◽  
Takuto Yonemichi ◽  
Koji Fukagata

Abstract Vortex shedding in the flow field causes many kinds of problems such as increase of drag and noise. Especially, the von Kármán vortex street behind bluff bodies, e.g. a tire of an airplane and a pantograph of a train, greatly contributes to them. One of the effective methods to suppress the vortices is the use of plasma actuators (PAs). A PA can induce flow by applying a high-voltage and high-frequency AC voltage to its electrodes. In the present study, we use an opposed-type PA (O-PA), which consists of two PAs facing each other. The O-PA can induce a jet in the direction perpendicular to the surface because of a collision of flows induced by the two PAs. In this study, we investigate the control effect of an O-PA on the flow around a square cylinder using an O-PA by means of the PIV measurement. First, we measure the flow induced by an O-PA. It is confirmed that the velocity of the induced flow increases as the applied voltage Vpp increases, and the O-PA induces the jet of about 1.5 m/s under Vpp = 10kV. Next, we measure the flow around a square cylinder with no control. It is confirmed that the von Kármán vortex street occurs behind a square cylinder. Finally, we measure the flow around a square cylinder under the control by the O-PA attached on the rear surface. It is confirmed that the vortex shedding behind a square cylinder is suppressed by the O-PA under Vpp = 10kV.


2014 ◽  
Vol 493 ◽  
pp. 68-73 ◽  
Author(s):  
Willy Stevanus ◽  
Yi Jiun Peter Lin

The research studies the characteristics of the vertical flow past a finite-length horizontal cylinder at low Reynolds numbers (ReD) from 250 to 1080. The experiments were performed in a vertical closed-loop water tunnel. Flow fields were observed by the particle tracer approach for flow visualization and measured by the Particle Image Velocimetry (P.I.V.) approach for velocity fields. The characteristics of vortex formation in the wake of the finite-length cylinder change at different regions from the tip to the base of it. Near the tip, a pair of vortices in the wake was observed and the size of the vortex increased as the observed section was away from the tip. Around a distance of 3 diameters of the cylinder from its tip, the vortex street in the wake was observed. The characteristics of vortex formation also change with increasing Reynolds numbers. At X/D = -3, a pair of vortices was observed in the wake for ReD = 250, but as the ReD increases the vortex street was observed at the same section. The vortex shedding frequency is analyzed by Fast Fourier Transform (FFT). Experimental results show that the downwash flow affects the vortex shedding frequency even to 5 diameters of the cylinder from its tip. The interaction between the downwash flow and the Von Kármán vortex street in the wake of the cylinder is presented in this paper.


2012 ◽  
Vol 108 (26) ◽  
Author(s):  
Marie-Jean Thoraval ◽  
Kohsei Takehara ◽  
Takeharu Goji Etoh ◽  
Stéphane Popinet ◽  
Pascal Ray ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document