scholarly journals Effect of the turbulent boundary layer thickness on the flow characteristics around a circular cylinder near a plane surface.

1986 ◽  
Vol 52 (479) ◽  
pp. 2566-2574 ◽  
Author(s):  
Munehiko HIWADA ◽  
IKuo MABUCHI ◽  
Masaya KUMADA ◽  
Hiroyasu IWAKOSHI
1984 ◽  
Vol 27 (232) ◽  
pp. 2142-2151 ◽  
Author(s):  
Takao KAWAMURA ◽  
Munehiko HIWADA ◽  
Toshiharu HIBINO ◽  
Ikuo MABUCHI ◽  
Masaya KUMADA

2012 ◽  
Vol 19 ◽  
pp. 206-213
Author(s):  
DANG-GUO YANG ◽  
JIAN-QIANG LI ◽  
ZHAO-LIN FAN ◽  
XIN-FU LUO

An experimental study was conducted in a 0.6m by 0.6m wind-tunnel to analyze effects of boundary-layer thickness on unsteady flow characteristics inside a rectangular open cavity at subsonic and transonic speeds. The sound pressure level (SPL) distributions at the centerline of the cavity floor and Sound pressure frequency spectrum (SPFS) characteristics on some measurement positions presented herein was obtained with cavity length-to-depth ratio (L/D) of 8 over Mach numbers (Ma) of 0.6 and 1.2 at a Reynolds numbers (Re) of 1.23 × 107 and 2.02 × 107 per meter under different boundary-layer thickness to cavity-depth ratios (δ/D). The experimental angle of attack, yawing and rolling angles were 0°. The results indicate that decrease in δ/D leads to severe flow separation and unsteady pressure fluctuation, which induces increase in SPL at same measurement points inside the cavity at Ma of 0.6. At Ma of 1.2, decrease in δ/D results in enhancing compressible waves. Generally, decrease in δ/D induces more flow self-sustained oscillation frequencies. It also makes severer aerodynamic noise inside the open cavity.


2018 ◽  
Vol 17 (4-5) ◽  
pp. 438-466 ◽  
Author(s):  
Baofeng Cheng ◽  
Yiqiang Han ◽  
Kenneth S Brentner ◽  
Jose Palacios ◽  
Philip J Morris ◽  
...  

The change of helicopter rotor broadband noise due to different surface roughness during ice accretion is investigated. Comprehensive rotor broadband noise measurements are carried out on rotor blades with different roughness sizes and rotation speeds in two facilities: the Adverse Environment Rotor Test Stand facility at The Pennsylvania State University, and the University of Maryland Acoustic Chamber. In both facilities, the measured high-frequency broadband noise increases significantly with increasing surface roughness height. Rotor broadband noise source identification is conducted and the broadband noise related to ice accretion is thought to be turbulent boundary layer-trailing edge noise. Theory suggests turbulent boundary layer-trailing edge noise scales with Mach number to the fifth power, which is also observed in the experimental data confirming that the dominant broadband noise mechanism during ice accretion is trailing edge noise. A correlation between the ice-induced surface roughness and the broadband noise level is developed. The correlation is strong, which can be used as an ice accretion early detection tool for helicopters, as well as to quantify the ice-induced roughness at the early stage of rotor ice accretion. The trailing edge noise theories developed by Ffowcs Williams and Hall, and Howe both identify two important parameters: boundary layer thickness and turbulence intensity. Numerical studies of two-dimensional airfoils with different ice-induced surface roughness heights are conducted to investigate the extent that surface roughness impacts the boundary layer thickness and turbulence intensity (and ultimately the turbulent boundary layer-trailing edge noise). The results show that boundary layer thickness and turbulence intensity at the trailing edge increase with the increased roughness height. Using Howe’s trailing edge noise model, the increased sound pressure level of the trailing edge noise due to the increased displacement thickness and normalized integrated turbulence intensity are 6.2 and 1.6 dB for large and small accreted ice roughness heights, respectively. The estimated increased sound pressure level values agree reasonably well with the experimental results, which are 5.8 and 2.6 dB for large and small roughness height, respectively.


1958 ◽  
Vol 2 (04) ◽  
pp. 33-51
Author(s):  
Yun-Sheng Yu

Tests made on the turbulent boundary layer on a circular cylinder in axial flow at zero pressure gradient are described. From the measurements, similarity laws of the velocity profile are formulated, and various boundary-layer characteristics are evaluated and compared with the flatplate results. It is found that the effect of transverse curvature is to increase the surface shearing stress and to decrease the boundary-layer thickness, and that the latter variation is more pronounced than the former.


2005 ◽  
Vol 128 (2) ◽  
pp. 153-161 ◽  
Author(s):  
Takayuki Tsutsui ◽  
Masafumi Kawahara

Heat transfer characteristics around a low aspect ratio cylindrical protuberance placed in a turbulent boundary layer were investigated. The diameters of the protuberance, D, were 40 and 80mm, and the height to diameter aspect ratio H∕D ranged from 0.125 to 1.0. The Reynolds numbers based on D ranged from 1.1×104 to 1.1×105 and the thickness of the turbulent boundary layer at the protuberance location, δ, ranged from 26 to 120mm for these experiments. In this paper we detail the effects of the boundary layer thickness and the protuberance aspect ratio on heat transfer. The results revealed that the overall heat transfer for the cylindrical protuberance reaches a maximum value when H∕δ=0.24.


2000 ◽  
Vol 420 ◽  
pp. 47-83 ◽  
Author(s):  
NIKOLAUS A. ADAMS

The turbulent boundary layer along a compression ramp with a deflection angle of 18° at a free-stream Mach number of M = 3 and a Reynolds number of Reθ = 1685 with respect to free-stream quantities and mean momentum thickness at inflow is studied by direct numerical simulation. The conservation equations for mass, momentum, and energy are solved in generalized coordinates using a 5th-order hybrid compact- finite-difference-ENO scheme for the spatial discretization of the convective fluxes and 6th-order central compact finite differences for the diffusive fluxes. For time advancement a 3rd-order Runge–Kutta scheme is used. The computational domain is discretized with about 15 × 106 grid points. Turbulent inflow data are provided by a separate zero-pressure-gradient boundary-layer simulation. For statistical analysis, the flow is sampled 600 times over about 385 characteristic timescales δ0/U∞, defined by the mean boundary-layer thickness at inflow and the free-stream velocity. Diagnostics show that the numerical representation of the flow field is sufficiently well resolved.Near the corner, a small area of separated flow develops. The shock motion is limited to less than about 10% of the mean boundary-layer thickness. The shock oscillates slightly around its mean location with a frequency of similar magnitude to the bursting frequency of the incoming boundary layer. Turbulent fluctuations are significantly amplified owing to the shock–boundary-layer interaction. Reynolds-stress maxima are amplified by a factor of about 4. Turbulent normal and shear stresses are amplified differently, resulting in a change of the structure parameter. Compressibility affects the turbulence structure in the interaction area around the corner and during the relaxation after reattachment downstream of the corner. Correlations involving pressure fluctuations are significantly enhanced in these regions. The strong Reynolds analogy which suggests a perfect correlation between velocity and temperature fluctuations is found to be invalid in the interaction area.


1965 ◽  
Vol 7 (2) ◽  
pp. 127-130 ◽  
Author(s):  
B. H. Lee ◽  
P. D. Richardson

The practical relevance of investigations of the effect of oscillations on convective heat transfer is discussed. Some experiments on overall heat transfer from a horizontal heated circular cylinder in a transverse, horizontal standing sound field are reported. Observations of local effects of sound on boundary layer thickness and heat transfer are described, and a correlation of heat transfer spanning all sound intensities is suggested in the light of these observations. The correlation is fitted well by the data, and thus provides adducive evidence for the explanation of the phenomena observed.


Sign in / Sign up

Export Citation Format

Share Document