scholarly journals Critical Heat Flux for Flow-Boiling of Water in Small-Diameter Tubes under Low-Pressure Conditions.

1995 ◽  
Vol 61 (591) ◽  
pp. 4109-4116 ◽  
Author(s):  
Masatoshi Kureta ◽  
Kaichiro Mishima ◽  
Hideaki Nishihara
2020 ◽  
Vol 28 ◽  
pp. 50-58
Author(s):  
Daniel Vlček ◽  
Ladislav Suk ◽  
Kamil Števanka ◽  
Taron Petrosyan

Steady state flow boiling experiments were conducted on a technically smooth Inconel 625 tube with outer diameter 9.1 mm at inlet pressures 131, 220 and 323 kPa, inlet temperatures 62, 78 and 94 °C and approximately 400, 600 and 1000 kg/(m2.s) mass flow. Water of these parameters was entering into the vertically aligned annulus, where the uniformly heated tube was placed until the critical heat flux (CHF) appeared. The experimental data were compared to estimations of CHF by local PGT tube correlation and Groeneveld’s look-up tables for tubes. The results imply that in the region of low pressure and low mass flux, the differences between calculations and experiments are substantial (more than 50 % of CHF). The calculations further imply that look-up tables and tube correlations should be corrected to the annulus geometry. Here, the Doerffer’s approach was chosen and led to a substantial enhancement of CHF estimation. Yet, a new correlation for the region of low pressure and flow is needed.


Author(s):  
Christoph Haas ◽  
Leonhard Meyer ◽  
Thomas Schulenberg

We investigated the critical heat flux (CHF) for flow boiling of water in a vertical annulus. The coaxial annulus has a diameter ratio of 1.37 and the inner zircaloy tube is heated directly over a length of 325 mm. CHF can occur prematurely due to flow instabilities. Therefore, we analyzed the flow stability at different heat input conditions using two types of pumps, a rotary and a gear type pump. The unstable CHF occurred at 61% and 90% of the stable value for the rotary and the gear type pump, respectively. Consequently, the following CHF experiments were conducted at stable flow conditions. The outlet pressure was constant at 120 kPa, the mass flux varied from 250 to 1000 kg/(m2s) and the inlet subcooling was at 102, 167, and 250 kJ/kg. The CHF results increase with mass flux from 0.67 to 2.62 MW/m2 and show similar trends compared to literature data. However, the experimental data for flow boiling in annuli at low pressure are limited. Additionally, we measured the dynamic contact angle between the zircaloy tube surface and water using the Wilhelmy method.


Author(s):  
Satish G. Kandlikar

Accurate prediction of critical heat flux (CHF) in microchannels and small diameter tubes is of great interest in estimating the safe operational limits of cooling systems employing flow boiling. Scale analysis is applied to identify the relevant forces leading to the CHF condition. Using these forces, a local parameter model is developed to predict the flow boiling CHF. The theoretical model is an extension of an earlier pool boiling CHF model incorporating a force balance among the evaporation momentum, surface tension, inertia, and viscous forces. Weber number, capillary number, and a new non-dimensional group K2, representing the ratio of evaporation momentum to surface tension forces, emerged as main groups in quantifying the narrow channel effects on CHF. The constants in the model were calculated from the available experimental data. The mean error with ten data sets is 19.7 percent, with 76 percent data falling within ±30% error band, and 93 percent within ±50% error band. Evaluating individualized set of constants for each data set resulted in mean errors of less than 10 percent for all data sets. The success of the model indicates that flow boiling CHF can be modeled as a local phenomenon and the scale analysis is able to reveal important information regarding fundamental mechanisms leading to the CHF condition. The final equations resulting from this model are given by Eqs. (18–22) along with the transition criteria given by Eq. (28).


2012 ◽  
Vol 44 (4) ◽  
pp. 429-436 ◽  
Author(s):  
Seung-Won Lee ◽  
Seong-Dae Park ◽  
Sa-Rah Kang ◽  
Seong-Man Kim ◽  
Han Seo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document