dynamic contact angle
Recently Published Documents


TOTAL DOCUMENTS

413
(FIVE YEARS 87)

H-INDEX

40
(FIVE YEARS 6)

2022 ◽  
Vol 933 ◽  
Author(s):  
Lubomír Bureš ◽  
Yohei Sato

The dynamics of the microlayer beneath a growing bubble in nucleate boiling significantly impacts the heat-transfer characteristics of the process. The minute thickness of the microlayer motivates the use of direct numerical simulation (DNS) to model its behaviour if empirical models are to be avoided. In this work, we develop a computational strategy for utilising DNS to model nucleate boiling by resolving explicitly the microlayer, directly coupling, in a stable manner, the mass, momentum and energy conservation equations with the conjugate heat transfer between the solid and fluid domains. To this end, closure models for the treatment of interfacial heat transfer and the dynamic contact angle are introduced and substantiated. The computational procedure is validated against relevant experimental data recently measured at the Massachusetts Institute of Technology; it is shown that the main observed growth features and surface heat-transfer characteristics are well reproduced using our model. We go on to perform a sensitivity study of the dependence of the initial microlayer thickness distribution on the applied superheat and fluid properties. The results indicate that an equation derived from lubrication theory captures the observed trends well. Finally, a first demonstration of DNS of boiling with an explicitly resolved microlayer in three-dimensional Cartesian coordinates is presented in one of the appendices.


2022 ◽  
Author(s):  
Christian Honnigfort ◽  
Leon Topp ◽  
Natalia García Rey ◽  
Andreas Heuer ◽  
Björn Braunschweig

Smart surfaces that can change their wetting behavior on demand are interesting for applications such as self-cleaning surfaces or lab-on-a-chip devices. In order to functionalize aluminum oxide surfaces, we have synthesized arylazopyrazole phosphonic acids (butyl-AAP-C18PA) that represent a new class of photoswitchable molecules for these oxide surfaces. Butyl-AAP-C18PA monolayers were deposited on alpha-Al2O3(0001) and show reversible E/Z photo-switching with UV (Z) and green (E) light that can trigger contact angle changes of up to ~10°. We monitored these changes on the macroscopic level by recording the dynamic contact angle while the monolayer was switched in situ from the E to the Z state. On the molecular level, time-resolved vibrational sum-frequency generation (SFG) spectroscopy provided information on the kinetic changes within the AAP monolayer and the relevant characteristic time scales for E to Z switching and vice versa. In addition, vibrational SFG at different relative humidity indicates that the thermal stability of the Z configuration is largely influenced by the presence of water and that water can stabilize the Z state and, thus, hinder the AAP monolayer to switch into the E state when it is immersed in H2O. Having established the characteristic times for switching on the molecular scale from SFG spectroscopy, we additional measure the dynamic contact angle. Further, we reveal the time scales of the coupled substrate and droplet dynamics which we have extracted individually. For that, we report on a relaxation model, that can be solved analytically and which is verified via comparison with simulations of a Lennard Jones system and a comparison with experimental data. Indeed, our modelling of these coupled relaxation processes allows us to predict the non-trivial variation of the time-dependence of the contact angle when changing the size of the droplet. The observed slowing-down for E to Z switching upon the presence of the droplet is rationalized in terms of specific interactions of water with the exposed AAP moieties.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 206
Author(s):  
Shan Cheng ◽  
Nan Li ◽  
Yuxi Pan ◽  
Bing Wang ◽  
Haoyue Hao ◽  
...  

This study focused on the faint interface bonding between carbon fiber (CF) and poly(phthalazinone ether ketone) (PPEK) thermoplastic, a multistage hybrid interface layer was constructed via the condensation reaction of N-[3-(Trimethoxysilyl)propyl]-N,N,N-trimethylammonium chloride (KHN+) and the electrostatic adsorption of graphene oxide (GO). The influence of the contents of GO (0.2 wt%, 0.4 wt%, 0.6 wt%) on the interfacial properties of composites was explored. FTIR, Raman spectra, XPS tests indicated the successful preparation of CF-KHN+-GO reinforcements. The multistage hybrid interface layer significantly increased fiber surface roughness without surface microstructure destruction. Simultaneously, polarity and wettability are remarkably improved as evidenced by the dynamic contact angle experiment. The interlaminar shear strength (ILSS) and flexural strength of the CF/PPEK composites with 0.4 wt% GO (CF-KHN+-4GO) were 74.57 and 1508 MPa, which was 25.2% and 23.5% higher than that of untreated CF/PPEK composite, respectively. Dynamic mechanical analysis proved that CF/GO/PPEK composites have excellent high-temperature mechanical properties. This study furnishes an unsophisticated and valid strategy to build an interface transition layer with a strong binding force, which would offer a new train of thought in preparing high-performing structural composites.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261441
Author(s):  
Sudeep R. Bapat

Estimating the contact angle of a virus infected saliva droplet is seen to be an important area of research as it presents an idea about the drying time of the respective droplet and in turn of the growth of the underlying pandemic. In this paper we extend the data presented by Balusamy, Banerjee and Sahu [“Lifetime of sessile saliva droplets in the context of SARS-CoV-2,” Int. J. Heat Mass Transf. 123, 105178 (2021)], where the contact angles are fitted using a newly proposed half-circular wrapped-exponential model, and a sequential confidence interval estimation approach is established which largely reduces both time and cost with regards to data collection.


e-Polymers ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 38-47
Author(s):  
Kaifang Xie ◽  
Xinjun Bao ◽  
Hengshu Zhou ◽  
Bin He ◽  
Yuegang Liu ◽  
...  

Abstract In this article, water-based polyurethane (PU) with different concentrations and partial alcoholysis polyvinyl alcohol (PVA) were used to coat polyester (PET) harness cord in turn. The surface and mechanical properties of harness cord before and after coating were evaluated by performing the tests of dynamic contact angle, morphology observation, bending properties, tensile properties, and wearability. It was found that the surface properties of 1.5% PU-coated harness cord tended to be stable, and the mechanical properties of PU(1.5%)/PVA-coated harness cord were optimal. Compared with PVA-coated harness cord, the wearability of PU(1.5%)/PVA-coated harness cord showed a great increment up to 135.7%. This was because the PU coating effectively improved the interfacial properties between the PVA coating and the hydrophobic PET fibers and enhanced the adhesion of the PVA coating to the PET fibers.


Fluids ◽  
2021 ◽  
Vol 6 (11) ◽  
pp. 405
Author(s):  
Nicola Suzzi ◽  
Giulio Croce

The bifurcation analysis of a film falling down an hybrid surface is conducted via the numerical solution of the governing lubrication equation. Instability phenomena, that lead to film breakage and growth of fingers, are induced by multiple contamination spots. Contact angles up to 75∘ are investigated due to the full implementation of the free surface curvature, which replaces the small slope approximation, accurate for film slope lower than 30∘. The dynamic contact angle is first verified with the Hoffman–Voinov–Tanner law in case of a stable film down an inclined plate with uniform surface wettability. Then, contamination spots, characterized by an increased value of the static contact angle, are considered in order to induce film instability and several parametric computations are run, with different film patterns observed. The effects of the flow characteristics and of the hybrid pattern geometry are investigated and the corresponding bifurcation diagram with the number of observed rivulets is built. The long term evolution of induced film instabilities shows a complex behavior: different flow regimes can be observed at the same flow characteristics under slightly different hybrid configurations. This suggest the possibility of controlling the rivulet/film transition via a proper design of the surfaces, thus opening the way for relevant practical application.


2021 ◽  
Vol 2069 (1) ◽  
pp. 012044
Author(s):  
Michele Bianchi Janetti ◽  
Hans Janssen

Abstract The moisture retention curve of porous materials is often assumed to be independent of the process dynamics, i.e., of the drying/wetting rate. Experimental outcomes and pore-scale simulations put this assumption into question though. It has been shown that dynamic effects can significantly affect the moisture retention curve, which presents different behaviours, depending on whether it is determined at transient or steady-state conditions. The cause of this phenomenon is addressed as “dynamic effects” in the literature. While dynamic effects of the drainage process have been widely studied, the data concerning spontaneous imbibition are still quite limited. We attempt at reducing this lack of knowledge by modelling spontaneous imbibition in an artificial material sample represented by a pore network model. In our model, the liquid flow is described via the Hagen-Poiseuille equation, while a percolation algorithm controls the dynamics of liquid-gas interfaces through the network junctions. A dynamic contact angle between liquid water and pore surface is considered, depending on the velocity of the meniscus. Dynamic states are determined by linking the local capillary pressure to the local moisture content in the artificial material sample subject to spontaneous imbibition. Our investigation demonstrates that dynamic effects due to contact angle variations may have a major impact on the imbibition process.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. A. Quetzeri-Santiago ◽  
J. R. Castrejón-Pita ◽  
A. A. Castrejón-Pita

AbstractStopping droplets from bouncing or splashing after impacting a surface is fundamental in preventing cross-contamination, and the spreading of germs and harmful substances. Here we demonstrate that dielectrowetting can be applied to actively control the dynamics of droplet impact. Moreover, we demonstrate that dielectrowetting can be used to prevent droplet bouncing and suppress splashing. In our experiments, the dielectrowetting effect is produced on a flat substrate by two thin interdigitated electrodes connected to an alternating current potential. Our findings show that the strength of the electric potential can affect the dynamic contact angle and regulate the spreading, splashing and receding dynamics at the right time-scales.


Sign in / Sign up

Export Citation Format

Share Document