scholarly journals Effect of Velocity Ratio on the Control of Large-Scale Structures in Mixing Layers.

1996 ◽  
Vol 62 (601) ◽  
pp. 3229-3235
Author(s):  
Toshio MIYAUCHI ◽  
Mamoru TANAHASHI ◽  
Kei MATSUOKA
1999 ◽  
Vol 121 (3) ◽  
pp. 577-587 ◽  
Author(s):  
F. Muldoon ◽  
S. Acharya

Results of a three-dimensional unsteady computational study of a row of jets injected normal to a crossflow are presented with the aim of understanding the dynamics of the large-scale structures in the region near the jet. The jet to crossflow velocity ratio is 0.5. A modified version of the computer program (INS3D), which utilizes the method of artificial compressibility, is used for the computations. Results obtained clearly indicate that the near-field large-scale structures are extremely dynamic in nature, and undergo breakup and reconnection processes. The dynamic near-field structures identified include the counterrotating vortex pair (CVP), the horseshoe vortex, wake vortex, wall vortex, and shear layer vortex. The dynamic features of these vortices are presented in this paper. The CVP is observed to be a convoluted structure interacting with the wall and horseshoe vortices. The shear layer vortices are stripped by the crossflow, and undergo pairing and stretching events in the leeward side of the jet. The wall vortex is reoriented into the upright wake system. Comparison of the predictions with mean velocity measurements is made. Reasonable agreement is observed.


1995 ◽  
Vol 7 (4) ◽  
pp. 864-876 ◽  
Author(s):  
Gregory S. Elliott ◽  
Mo Samimy ◽  
Stephen A. Arnette

Author(s):  
Frank Muldoon ◽  
Sumanta Acharya

Results of a three dimensional unsteady computational study of a row of jets injected normal to a cross-flow are presented with the aim of understanding the dynamics of the large scale structures in the region near the jet. The jet to cross-flow velocity ratio is .5. A modified version of the computer program (INS3D) which utilizes the method of artificial compressibility is used for the computations. Results obtained clearly indicate that the near field large scale structures are extremely dynamical in nature, and undergo breakup and reconnection processes. The dynamical near field structures identified include the counter rotating vortex pair (CVP), the horseshoe vortex, wake vortex, wall vortex and the shear layer vortex. The dynamical features of these vortices are presented in this paper. The CVP is observed to be a convoluted structure interacting with the wall and horseshoe vortices. The shear layer vortices are stripped by the crossflow, and undergo pairing and stretching events in the leeward side of the jet. The wall vortex is reoriented into the upright wake system. Comparison of the predictions with mean velocity measurements is made. Reasonable agreement is observed.


1991 ◽  
pp. 331-343 ◽  
Author(s):  
C. Lee ◽  
R. W. Metcalfe ◽  
F. Hussain

1995 ◽  
Vol 61 (589) ◽  
pp. 3243-3250
Author(s):  
Toshio Miyauchi ◽  
Mamoru Tanahashi ◽  
Shinobu Tokuda ◽  
Motohiro Suzuki

Author(s):  
L. Ukeiley ◽  
D. Wick ◽  
M. Glauser

The influence of large scale structures on the flow in a lobed mixer (a device utilized to enhance streamwise vorticity for increased mixing) is examined by a pseudo flow visualization method (v. Delville et al. 1988), and the Proper Orthogonal Decomposition (POD) (v. Lumley 1967). The pseudo flow visualization method utilizes specially designed hot wire rakes with high spatial resolution to provide the capability of plotting instantaneous velocity profiles. In this work, a rake of 15 hot wires is used to provide these profiles for a velocity ratio of 2:1, at several positions downstream of the lobed mixer. From these profiles a detailed description of the flow field is achieved. In particular, from this information, an idea of the spatial extent and shedding frequency of the large scale structures is determined. The shedding frequencies found are consistent with those found from spectral measurements. A one-dimensional version of the POD is then applied, which utilizes the measured streamwise velocity two-point correlation tensor. The pseudo flow visualization technique is then used to view the contribution from each proper orthogonal mode to the instantaneous signal and comparisons made to the full signal.


1989 ◽  
Vol 199 ◽  
pp. 297-332 ◽  
Author(s):  
P. A. Mcmurtry ◽  
J. J. Riley ◽  
R. W. Metcalfe

The effects of chemical heat release on the large-scale structure in a chemically reacting, turbulent mixing layer are investigated using direct numerical simulations. Three-dimensional, time-dependent simulations are performed for a binary, single-step chemical reaction occurring across a temporally developing turbulent mixing layer. It is found that moderate heat release slows the development of the large-scale structures and shifts their wavelengths to larger scales. The resulting entrainment of reactants is reduced, decreasing the overall chemical product formation rate. The simulation results are interpreted in terms of turbulence energetics, vorticity dynamics, and stability theory. The baroclinic torque and thermal expansion in the mixing layer produce changes in the flame vortex structure that result in more diffuse vortices than in the constant-density case, resulting in lower rotation rates of the large-scale structures. Previously unexplained anomalies observed in the mean velocity profiles of reacting jets and mixing layers are shown to result from vorticity generation by baroclinic torques.


Sign in / Sign up

Export Citation Format

Share Document