Volume 4: Heat Transfer; Electric Power; Industrial and Cogeneration
Latest Publications


TOTAL DOCUMENTS

128
(FIVE YEARS 0)

H-INDEX

11
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791878651

Author(s):  
M. Gritsch ◽  
A. Schulz ◽  
S. Wittig

Detailed measurements of heat transfer coefficients in the nearfield of three different film-cooling holes are presented. The hole geometries investigated include a cylindrical hole and two holes with a diffuser shaped exit portion (i.e. a fan-shaped and a laidback fanshaped hole). They were tested over a range of blowing ratios M = 0.25…1.75 at an external crossflow Mach number of 0.6 and a coolant-to-mainflow density ratio of 1.85. Additionally, the effect of the internal coolant supply Mach number is addressed. Temperatures of the diabatic surface downstream of the injection location are measured by means of an infrared camera system. They are used as boundary conditions for a finite element analysis to determine surface heat fluxes and heat transfer coefficients. The superposition method is applied to evaluate the overall film-cooling performance of the hole geometries investigated. As compared to the cylindrical hole, both expanded holes show significantly lower heat transfer coefficients downstream of the injection location, particularly at high blowing ratios. The laidback fanshaped hole provides a better lateral spreading of the injected coolant than the fanshaped hole which leads to lower laterally averaged heat transfer coefficients. Coolant passage crossflow Mach number affects the flowfield of the jet being ejected from the hole and, therefore, has an important impact on film-cooling performance.


Author(s):  
Arash Saidi ◽  
Bengt Sundén

Internal cooling channels are commonly used to reduce the thermal loads on the gas turbine blades to improve overall efficiency. In this study a numerical investigation has been carried out to provide a validated and consistent method to deal with the prediction of the fluid flow and the heat transfer of such channels with square cross sections. The rotation modified Navier-Stokes and energy equations together with a low-Re number version of the k-ε turbulence model are solved with appropriate boundary conditions. The solution procedure is based on a numerical method using a collocated grid, and the pressure-velocity coupling is handled by the SIMPLEC algorithm. The computations are performed with the assumption of fully developed periodic conditions. The calculations are carried out for smooth ducts with and without rotation and effects of rotation on the heat transfer are described. Similar numerical calculations have carried out for channels with rib-roughened walls. The obtained results are compared with available experimental data and empirical correlations for the heat transfer rate and the friction factor. Some details of the flow and heat transfer fields are also presented.


Author(s):  
Andreas Heselhaus

Efficient thermal design of turbine blade cooling needs to take wall temperature effects on heat transfer into account. This can only be achieved by a coupled calculation of hot gas flow and blade heat conduction. In this paper principle and stability proof of an algorithm are presented that allows to couple a steady state finite element heat conduction solver with a blockstructured steady state finite volume (FV) Navier-Stokes time marching flow solver. The stability of the developed coupling procedure as well as the instability of an alternative algorithm is shown analytically and numerically. The benefits of coupled calculating are shown for a convectively cooled turbine guide vane blade. In the example treated, temperature differences of more than 100 K arise compared to the same calculation performed in an uncoupled way.


Author(s):  
Oguz Uzol ◽  
Cengiz Camci

A new concept for enhanced turbulent transport of heat in internal coolant passages of gas turbine blades is introduced. The new heat transfer augmentation component called “oscillator fin” is based on an unsteady flow system using the interaction of multiple unsteady jets and wakes generated downstream of a fluidic oscillator. Incompressible, unsteady and two dimensional solutions of Reynolds Averaged Navier-Stokes equations are obtained both for an oscillator fin and for an equivalent cylindrical pin fin and the results are compared. Preliminary results show that a significant increase in the turbulent kinetic energy level occur in the wake region of the oscillator fin with respect to the cylinder with similar level of aerodynamic penalty. The new concept does not require additional components or power to sustain its oscillations and its manufacturing is as easy as a conventional pin fin. The present study makes use of an unsteady numerical simulation of mass, momentum, turbulent kinetic energy and dissipation rate conservation equations for flow visualization downstream of the new oscillator fin and an equivalent cylinder. Relative enhancements of turbulent kinetic energy and comparisons of the total pressure field from transient simulations qualitatively suggest that the oscillator fin has excellent potential in enhancing local heat transfer in internal cooling passages without significant aerodynamic penalty.


Author(s):  
Neil W. Harvey ◽  
Martin G. Rose ◽  
John Coupland ◽  
Terry Jones

A 3-D steady viscous finite volume pressure correction method for the solution of the Reynolds averaged Navier-Stokes equations has been used to calculate the heat transfer rates on the end walls of a modern High Pressure Turbine first stage stator. Surface heat transfer rates have been calculated at three conditions and compared with measurements made on a model of the vane tested in annular cascade in the Isentropic Light Piston Facility at DERA, Pyestock. The NGV Mach numbers, Reynolds numbers and geometry are fully representative of engine conditions. Design condition data has previously been presented by Harvey and Jones (1990). Off-design data is presented here for the first time. In the areas of highest heat transfer the calculated heat transfer rates are shown to be within 20% of the measured values at all three conditions. Particular emphasis is placed on the use of wall functions in the calculations with which relatively coarse grids (of around 140,000 nodes) can be used to keep computational run times sufficiently low for engine design purposes.


Author(s):  
Ryohei Yokoyama ◽  
Koichi Ito

Because of an increase in peak electricity demand during summer daytime, a decrease in the annual load factor of power generation facilities has been one of the serious problems for central power utility systems. On the other hand, utility-connected dispersed cogeneration systems have been increasingly installed for energy supply in industrial and commercial sectors. This paper analyzes the cooperative relationship between power utility and cogeneration systems through time-of-use pricing. A game-theory approach in mathematical programming, i.e., bilevel programming, is applied to attain this objective. At the upper level, a power utility system determines the time-of-use rates for demand and energy charges of electricity purchased by a cogeneration system to maximize its load factor, and at the lower level, a cogeneration system determines its design and operation to minimize its annual total cost. Through a basic case study, it has been shown how the time-of-use rates are determined to attain the cooperative relationship between power utility and cogeneration systems.


Author(s):  
K. Jung ◽  
D. K. Hennecke

The effect of leading edge film cooling on heat transfer was experimentally investigated using the naphthalene sublimation technique. The experiments were performed on a symmetrical model of the leading edge suction side region of a high pressure turbine blade with one row of film cooling holes on each side. Two different lateral inclinations of the injection holes were studied: 0° and 45°. In order to build a data base for the validation and improvement of numerical computations, highly resolved distributions of the heat/mass transfer coefficients were measured. Reynolds numbers (based on hole diameter) were varied from 4000 to 8000 and blowing rate from 0.0 to 1.5. For better interpretation, the results were compared with injection-flow visualizations. Increasing the blowing rate causes more interaction between the jets and the mainstream, which creates higher jet turbulence at the exit of the holes resulting in a higher relative heat transfer. This increase remains constant over quite a long distance dependent on the Reynolds number. Increasing the Reynolds number keeps the jets closer to the wall resulting in higher relative heat transfer. The highly resolved heat/mass transfer distribution shows the influence of the complex flow field in the near hole region on the heat transfer values along the surface.


Author(s):  
Dieter E. Bohn ◽  
Volker J. Becker

This paper presents the numerical investigations of the flow and heat transfer of two configurations of a transonic turbine guide vane. The basic configuration is a vane with convection cooling. The second configuration is additionally coated with a thermal barrier consisting of ZrO2. The results are obtained with a conjugate heat transfer and flow computer code that has been developed at the Institute of Steam and Gas Turbines. Measurement data is available for the basic configuration and the computational results are compared to the experimental results. The results show very good agreement between calculated and measured vane surface temperatures. The trailing edge turns out to be subjected to high thermal loads as it is too thin to be cooled effectively. Secondary flow phenomena like the passage vortex and the corner vortex and their impact on the temperature distribution are discussed. The ZrO2 coating is calculated for a thickness of 300μm. The substrate material temperatures are lowered by about 20 K–29 K in the stagnation point area and by about 27 K–43 K in the shock area on the suction side. At the trailing edge, the coating on the suction side and on the pressure side hardly influences the metal temperature.


Author(s):  
A. Kohli ◽  
K. A. Thole

Film-cooling is a widely used method of prolonging blade life in high performance gas turbines and is implemented by injecting cold air through discrete holes on the blade surface. Most experimental research on film-cooling has been performed using round holes supplied by a stagnant plenum. This can be quite different from the actual turbine blade conditions in that a crossflow may be present whereby the internal channel Reynolds number could be as high as 90,000. This computational study uses a film-cooling hole that is inclined at 35° with respect to the mainstream and is diffused at the hole exit by 15°. An engine representative jet-to-mainstream density ratio of two was simulated. The test matrix consisted of fourteen different cases that were simulated for the two different blowing ratios in which the following effects were investigated: a) the effect of the orientation of the coolant supply channel relative to the cooling hole, b) the effect of the channel Reynolds number, and c) the effect of the metering length of the cooling hole. Results showed that the orientation of the coolant supply had a large effect whereby the worst orientation, in terms of a reduced adiabatic effectiveness, was predicted when the channel supplying the cooling hole was perpendicular to the mainstream. For this particular orientation, higher laterally averaged effectiveness occurred at lower channel Reynolds numbers and with the hole having a short metering length.


Author(s):  
Anil K. Tolpadi ◽  
Michael E. Crawford

The heat transfer and aerodynamic performance of turbine airfoils are greatly influenced by the gas side surface finish. In order to operate at higher efficiencies and to have reduced cooling requirements, airfoil designs require better surface finishing processes to create smoother surfaces. In this paper, three different cast airfoils were analyzed: the first airfoil was grit blasted and codep coated, the second airfoil was tumbled and aluminide coated, and the third airfoil was polished further. Each of these airfoils had different levels of roughness. The TEXSTAN boundary layer code was used to make predictions of the heat transfer along both the pressure and suction sides of all three airfoils. These predictions have been compared to corresponding heat transfer data reported earlier by Abuaf et al. (1997). The data were obtained over a wide range of Reynolds numbers simulating typical aircraft engine conditions. A three-parameter full-cone based roughness model was implemented in TEXSTAN and used for the predictions. The three parameters were the centerline average roughness, the cone height and the cone-to-cone pitch. The heat transfer coefficient predictions indicated good agreement with the data over most Reynolds numbers and for all airfoils-both pressure and suction sides. The transition location on the pressure side was well predicted for all airfoils; on the suction side, transition was well predicted at the higher Reynolds numbers but was computed to be somewhat early at the lower Reynolds numbers. Also, at lower Reynolds numbers, the heat transfer coefficients were not in very good agreement with the data on the suction side.


Sign in / Sign up

Export Citation Format

Share Document