scholarly journals Drag Reduction of a Circular Cylinder with a Highly Water-Repellent Wall.

2000 ◽  
Vol 66 (650) ◽  
pp. 2565-2570
Author(s):  
Keizo WATANABE ◽  
Takao FUJITA
Volume 4 ◽  
2004 ◽  
Author(s):  
Takao Fujita ◽  
Keizo Watanabe

Laminar drag reduction is achieved by using a hydrophobic surface. In this method, fluid slip is applied at the hydrophobic surface. An initial experiment to clarify for a laminar skin friction reduction was conducted using ducts with a highly water-repellent surface. The surface has a fractal-type structure with many fine grooves. Fluid slip at a hydrophobic surface has been analyzed by applying a new wet boundary condition. In this simulation, an internal flow is assumed to be a two-dimensional laminar flow in a rectangular duct and an external flow is assumed to be a two-dimensional laminar flow past a circular cylinder. The VOF technique has been used as the method for tracking gas-liquid interfaces, and the CSF model has been used as the method for modeling surface tension effects. The wet boundary condition for the hydrophobic property on the surface has been determined from the volume ratio in contact with water near the surface. The model with a stable gas-liquid interface and the experimental results of flow past a circular cylinder at Re = 250 without growing the Karman vortex street are made, and these results show that laminar drag reduction occurring due to fluid slip can be explained in this model.


2014 ◽  
Vol 7 (1) ◽  
pp. 71-76 ◽  
Author(s):  
Ke Zhang ◽  
Zheng-Chuang Wang ◽  
Ya-Nan Zhang ◽  
Fang-Fang Zhang ◽  
Yi-Fan Hou ◽  
...  

1994 ◽  
Vol 60 (573) ◽  
pp. 1554-1560 ◽  
Author(s):  
Tamotsu Igarashi ◽  
Takayuki Tsutsui ◽  
Hirochika Kanbe

2021 ◽  
Vol 33 (12) ◽  
pp. 124105
Author(s):  
Longjun Wang ◽  
Md. Mahbub Alam ◽  
Yu Zhou

2001 ◽  
Author(s):  
Satoshi Ogata ◽  
Keizo Watanabe

Abstract The flow around a circular cylinder in surfactant solution was investigated experimentally by measurement of the pressure and velocity profiles in the Reynolds number range 6000 < Re < 50000. The test surfactant solutions were aqueous solutions of Ethoquad O/12 (Lion Co.) at concentrations of 50, 100 and 200 ppm, and sodium salicylate was added as a counterion. It was clarified that the pressure coefficient of surfactant solutions in the range of 10000 < Re < 50000 at the behind of the separation point was larger than that of tap water, and the separation angle increased with concentration of the surfactant solution. The velocity defect in surfactant solutions behind a circular cylinder was smaller than those in tap water. The drag coefficients of a circular cylinder in surfactant solutions were smaller than those of tap water in the range 10000 < Re < 50000, and no drag reduction occurred at Re = 6000. The drag reduction ratio increased with increasing concentration of surfactant solution. The maximum drag reduction ratio was approximately 35%.


2018 ◽  
Vol 11 (97) ◽  
pp. 4825-4843
Author(s):  
A. Mehmood ◽  
M. R. Hajj ◽  
I. Akhtar ◽  
M. Ghommem ◽  
L. T. Watson ◽  
...  

1999 ◽  
Author(s):  
Keizo Watanabe ◽  
Hiroshi Udagawa

Abstract By applying a highly water-repellent wall pipe in the drag reduction of polymer solutions, a flow system in which drag reduction is obtained in both laminar and turbulent flow ranges has been realized. Experiments were carried out to measure the pressure drop in pipes with a highly water-repellent wall and an acrylic resin wall by means of a pressure transducer. The diameter of the pipe was 6mm. The polymer solutions tested were PE015 aqueous solutions in the concentration range of 30ppm∼1000ppm. The drag reduction ratio for laminar flow was about 11∼15%. To understand this effect, the pressure drop was measured by using surfactant solutions and degassed water, and by pressurizing tap water in the pipeline. It was shown that the laminar drag reduction does not occur in the case of surfactant solutions although degassed water and pressurizing tap water in the pipeline have no effect on the reduction. In the laminar flow range, the friction factor of a power-law fluid with fluid slip was analyzed by applying the modified boundary condition on fluid slip at the pipe wall, and the analytical results agree with the experimental results in the low Reynolds number range.


Sign in / Sign up

Export Citation Format

Share Document