hydrophobic property
Recently Published Documents


TOTAL DOCUMENTS

208
(FIVE YEARS 60)

H-INDEX

17
(FIVE YEARS 2)

Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4453
Author(s):  
Yuanyuan Miao ◽  
Xiuya Wang ◽  
Yixing Liu ◽  
Zhenbo Liu ◽  
Wenshuai Chen

The Hummers method is the most commonly used method to prepare graphene oxide (GO). However, many waste acids remain in the raw reaction mixture after the completion of this reaction. The aim of this study was to reuse these waste acids efficiently. In this study, microcrystalline cellulose (MCC) was directly dissolved in the mixture after the high-temperature reaction of the Hummers method. The residual acid was used to hydrolyze MCC, and the graphene oxide/microcrystalline cellulose (GO/MCC) composites were prepared, while the acid was reused. The effects of MCC addition (0.5 g, 1.0 g, and 1.5 g in 20 mL) on the properties of the composites were discussed. The structure, composition, thermal stability, and hydrophobicity of GO/MCC composites were characterized and tested by SEM, XRD, FTIR, TG, and contact angle tests. The results showed that MCC could be acid hydrolyzed into micron and nano-scale cellulose by using the strong acidity of waste liquid after GO preparation, and it interacted with the prepared GO to form GO/MCC composites. When the addition amount of MCC was 1 g, the thermal stability of the composite was the highest due to the interaction between acid-hydrolyzed MCC and GO sheets. At the same time, the hydrophobic property of the GO/MCC composite is better than that of the GO film. The freeze-dried GO/MCC composites are more easily dispersed in water and have stronger stability.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4299
Author(s):  
Bin Tang ◽  
Yaoyu Yue ◽  
Zipeng Gai ◽  
Yao Huang ◽  
Ying Liu ◽  
...  

With the application of biomimetic shark skin microstructures with hydrophobicity in microfluidics, sensors and self-cleaning materials, microstructure processing methods are increasing. The preparation process has higher requirements for processing cost and efficiency. In this paper, linear low-density polyethylene (LLDPE) hydrophobic films were prepared with the help of melt fracture phenomenon. The equipment is a self-made single screw extruder. By adjusting the process parameters, the biomimetic shark skin structured LLDPE films with good hydrophobic property can be obtained. The surface microstructure shape of the product is related to kinds of additive, die temperature and screw speed. When AC5 was selected as an additive, the optimal processing parameter was found to be 160 °C die temperature and 80 r/min screw speed. A contact angle of 133° was obtained in this situation. In addition, the influences of die temperature and screw speed on the size of shark skin structure were also systematically investigated in this paper. It was found that the microstructure surface with hierarchical roughness had a better hydrophobic property.


2021 ◽  
Vol 2076 (1) ◽  
pp. 012031
Author(s):  
Ya Zhang ◽  
Yuyi Wang ◽  
Wen Nie ◽  
Han Zheng ◽  
Qihao Wang ◽  
...  

Abstract The magnetic chitosan-stearic acid compound was prepared for using chitosan and stearic acid. The morphology, structure and hydrophobic property of the magnetic chitosan-stearic acid compound were characterized. The influences of oil type and temperature on its oil absorption performance were determined. The results shows that the magnetic chitosan-stearic acid compound has a fluffy structure with a contact angle of 133.65°, indicating that the compound has a good hydrophobic property. Different oils have various impact on the oil absorption performance of the magnetic chitosan-stearic acid compound. The magnetic chitosan-stearic acid compound has the best oil absorption to crude oil, with an oil absorption rate of 4.12 g/g. With the increase of temperature, the oil absorption rate first increases and then decreases. There is an optimal temperature for oil absorption, with a temperature of 40°C.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6376
Author(s):  
Haiyang Yang ◽  
Duxin Li ◽  
Jun Yang ◽  
Jin Wang ◽  
Shunchang Gan

In this paper,4,4′-diaminodiphenyl ether and 2,2′-bis (trifluoromethyl)-4,4′-diaminophenyl ether are selected for molecular structure design, and PAI materials are synthesized by acyl chloride method. 2,2′-bis (trifluoromethyl)-4,4′-diaminophenyl ether has the same main chain structure as 4,4′-diaminodiphenyl ether, but the side chain contains two trifluoromethyl groups, which has high fluorine content. PAI terpolymerswere prepared by compounding two diamine monomers, and the effects of trifluoromethyl on heat resistance, friction and wear properties, hydrophobic properties and mechanical properties of PAI materials were studied. The results showed that with the increase of trifluoromethyl content, the Tg of PAI material first increased and then changed little, and the Td5% would decrease and the tensile properties would also decrease. The wear mechanism of PAI varied with the content of trifluoromethyl. With the increase of the amount of fluorinated diamine monomer, the adhesive wear degree of PAI materials gradually increased, and reached the maximum when the molar ratio of the two monomers was 5:5, and then decreased gradually. Different trifluoromethyl content had little effect on friction coefficient, and the friction coefficient increased slightly when the molar ratio of 4,4′-diaminodiphenyl ether to 2,2′-bis (trifluoromethyl)-4,4′-diaminophenyl ether is 1:9. With the increase of trifluoromethyl content, the wear of PAI material would increase. With the increase of the amount of trifluoromethyl, the water absorption of PAI material decreased and the water contact angle increased, which indicated that the hydrophobic property of PAI material was improved. To sum up, the results of this study showed that the introduction of trifluoromethyl into the side chain provided an effective way to prepare PAI materials with low water absorption. Considering the comprehensive properties such as heat resistance, friction and wear, tensile properties, etc., the appropriate addition amount is 10–30%.


2021 ◽  
Vol 9 ◽  
Author(s):  
Sen Kong ◽  
Rui Wang ◽  
Shengyu Feng ◽  
Dengxu Wang

The construction of silicone elastomers crosslinked by a natural crosslinker under a catalyst-free method is highly desirable. Herein we present catalyst-free silicone elastomers (SEs) by simply introducing tannic acid (TA) as a natural crosslinker when using poly (aminopropylmethylsiloxane-co-dimethylsiloxane) (PAPMS) as the base polymer. The crosslinked bonding of these SEs can be easily changed from hydrogen bonding to covalent bonding by altering the curing reaction from room temperature to heating condition. The formability and mechanical properties of the SEs can be tuned by altering various factors, including processing technique, the amount of TA and aminopropyl-terminated polydimethylsiloxane, the molecular weight and -NH2 content of PAPMS, and the amount of reinforcing filler. The hydrogen bonding was proved by the reversible crosslinking of the elastomers, which can be gradually dissolved in tetrahydrofuran and re-formed after removing the solvent. The covalent bonding was proved by a model reaction of catechol and n-decylamine and occurred through a combination of hydroxylamine reaction and Michael addition reaction. These elastomers exhibit good thermal stability and excellent hydrophobic property and can bond iron sheets to hold the weight of 500 g, indicating their promising as adhesives. These results reveal that TA as a natural product is a suitable “green” crosslinker for the construction of catalyst-free silicone elastomers by a simple crosslinking strategy. Under this strategy, TA and more natural polyphenols could be certainly utilized as crosslinkers to fabricate more organic elastomers by selecting amine-containing polymers and further explore their extensive applications in adhesives, sealants, insulators, sensors, and so forth.


2021 ◽  
Vol 11 (1) ◽  
pp. 3
Author(s):  
Magdi H. Mussa ◽  
F. Deeba Zahoor ◽  
Oliver Lewis ◽  
Nicholas Farmilo

The inherent reactivity of Al–Cu–Mg alloys is such that their use for building structural, maritime, and airplane components with great strength/weight ratios would not be possible without good anti-corrosion systems. These systems could be considered as imitations of the protection mechanism found in the conventional hexavalent chromium-based system, but with additional limited environmental impact, and in particular without toxic or carcinogenic effects. These coatings also are intended to be eco-friendly, using less of the valuable raw materials and energy than more traditional methods. Silica-based hybrid protective coatings have been shown to exhibit excellent chemical stability combined with the ability to reduce the corrosion of metal substrates. However, research shows that sol–gel has some limitations in terms of the period of the anti-corrosive properties. Therefore, this work reports the performance of a silica-based hybrid sol–gel coating encapsulated with benzimidazole (BZI) that can be applied to light alloys to form an inherently inhibited and crack-free coating. This coating was applied on AA 2024-T3 and cured at 80 °C. The high corrosion resistance performance results from the combination of good adhesion, the hydrophobic property of the silica-based hybrid coating, and the presence of the encapsulated (BZI) film-forming volatile corrosion inhibitor, which is released at pores within the coating system, resulting in film-forming, reducing the reaction at cathodic sites. The evaluation of this mechanism is based on using electrochemical testing techniques. The anti-corrosion properties of the coatings were studied when immersed in 3.5% NaCl by using electrochemical impedance spectroscopy (EIS) and potential-dynamic polarization scanning (PDPS). The chemical confirmation was performed by infrared spectroscopy (ATR-FTIR), supported by analyzing the morphology of the surface before and after the immersion testing by using scanning electron microscopy (SEM). The benzimidazole-silica-based hybrid coating exhibited excellent anti-corrosion properties, providing an adherent protective film on the aluminum alloy 2024-T3 samples compared to sol–gel-only and bare metals, as a cost-effective and eco-friendly system.


2021 ◽  
Vol 5 (5) ◽  
pp. 747-754
Author(s):  
Nur Nabilah Mohd Za’im ◽  
Hartina Mohd Yusop ◽  
Wan Norfazilah Wan Ismail

A new hydrophobic hexyltrimethoxysilane (HTMS) coating for polyester fabric was successfully synthesized via a one-step water-based sol-gel method under acidic condition. Five different molar ratios of HTMS: water (1;40, 1:30, 1:20, 1:12 and 1:3) were prepared and the solution was deposited onto the polyester fabric by a simple dip-pad-cure process. The effect of water content on hydrophobicity was evaluated by manual testing on the treated polyester fabric samples. The effectiveness of hydrophobicity properties was further characterized using water contact angle (WCA) measurement. The optimized molar ratio of 1:3 was found to obtain the best hydrophobic property of 136.2° with particle size 115.3 µm measured using Particle Size Analyzer (PSA). Fourier transform infrared spectroscopy (FTIR) analysis confirmed the success of sol gel process with the presence of Si-O-Si band, which was also determined using energy dispersive X-ray spectroscopy (EDX). The Scanning Electron Microscopy (SEM) images revealed a good surface morphology of the homogenous thin xerogel coating with no visible cracks. Using HTMS without combinations of other precursors resulted in rough surface structure due to the low surface energy caused by long-chain alkyl silane in the HTMS coating and this provided the treated polyester fabric with good hydrophobicity. Doi: 10.28991/esj-2021-01309 Full Text: PDF


Crystals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1080
Author(s):  
Jiyeon Kim ◽  
Ji-Hoon Lee

We proposed a method for enhancing the planar orientation of reactive mesogen (RM) molecules by means of anisotropic plasma treatment. Anisotropic surface plasma, of which energy density is dependent on the azimuthal angle, was generated by column-shaped ceramic electrodes. The anisotropic plasma was discharged on the surface of a polyvinyl alcohol (PVA) alignment layer before the rubbing process began. The contact angle of the surface was increased from 12° to 83° after plasma treatment, indicating a hydrophobic property of the surface. From the atomic force microscopy (AFM) measurement, it was found that the grain size of the PVA layer was reduced and that the grooved patterns were formed provided that the plasma direction was parallel to the rubbing direction of the surface. Consequently, the planar orientation was enhanced, and the in-plane retardation of the photo-polymerized RM films increased when the parallel plasma was treated on the surface.


2021 ◽  
Vol 355 ◽  
pp. 129573
Author(s):  
Junjun Zhang ◽  
Xiaowei Huang ◽  
Jiyong Shi ◽  
Li Liu ◽  
Xinai Zhang ◽  
...  
Keyword(s):  

Author(s):  
Simzar Hosseinzadeh ◽  
Hojjatollah Nazari ◽  
Elaheh Esmaeili ◽  
Shadie Hatamie

AbstractCurcumin has been recognized as an effective anticancer agent. However, due to its hydrophobic property, the cell absorption is not satisfied. Herein, the curcumin nanoparticles were prepared in the presence of polyethylene glycol 6000 (PEG6000) to reduce its elimination by immune system. For first time, not only the curcumin was encapsulated within the niosome nanoparticles modified by PEG, there are no reports related to the anticancer property of curcumin against thyroid cancers. The nanoparticles was developed and its anticancer was studied on sw-1736 cancer cell line. The nanoparticles were examined by scanning electron microscopy (SEM) and dynamic light scattering (DLS). Also, the release profile of curcumin, the IC50 concentration, the radical amount and the gene expression were evaluated. The optimized nanoparticles showed a diameter of 212 ± 31 nm by SEM and the encapsulation efficiency and loading capacity of 76% and 16.8% respectively. DLS confirmed the polydispersity index (PDI) of 0.596 and the release model was shown a sustained release with the delivery of 68% curcumin after 6 days. Also, the nanoparticles indicated the higher storage stability at 4 °C. After the cell treatment, the apoptotic bodies were appeared and IC50 was obtained as 0.159 mM. Moreover, the generated radicals by the treated cells was 86% after 72 h and the gene pattern indicated the bax/bcl2 ratio of 6.83 confirming the apoptosis effect of the nanoparticles. The results approved the nanoparticles could be suggested as an anticancer drug candidate for thyroid cancers.


Sign in / Sign up

Export Citation Format

Share Document