Super Water-Repellent Surfaces: Potential Application to Drag Reduction of Yachts

2014 ◽  
Vol 7 (1) ◽  
pp. 71-76 ◽  
Author(s):  
Ke Zhang ◽  
Zheng-Chuang Wang ◽  
Ya-Nan Zhang ◽  
Fang-Fang Zhang ◽  
Yi-Fan Hou ◽  
...  
1999 ◽  
Author(s):  
Keizo Watanabe ◽  
Hiroshi Udagawa

Abstract By applying a highly water-repellent wall pipe in the drag reduction of polymer solutions, a flow system in which drag reduction is obtained in both laminar and turbulent flow ranges has been realized. Experiments were carried out to measure the pressure drop in pipes with a highly water-repellent wall and an acrylic resin wall by means of a pressure transducer. The diameter of the pipe was 6mm. The polymer solutions tested were PE015 aqueous solutions in the concentration range of 30ppm∼1000ppm. The drag reduction ratio for laminar flow was about 11∼15%. To understand this effect, the pressure drop was measured by using surfactant solutions and degassed water, and by pressurizing tap water in the pipeline. It was shown that the laminar drag reduction does not occur in the case of surfactant solutions although degassed water and pressurizing tap water in the pipeline have no effect on the reduction. In the laminar flow range, the friction factor of a power-law fluid with fluid slip was analyzed by applying the modified boundary condition on fluid slip at the pipe wall, and the analytical results agree with the experimental results in the low Reynolds number range.


1996 ◽  
Vol 62 (601) ◽  
pp. 3330-3334 ◽  
Author(s):  
Keizo WATANABE ◽  
YANUAR ◽  
Katsutoshi OKIDO ◽  
Hiroshi MIZUNUMA

Volume 4 ◽  
2004 ◽  
Author(s):  
Takao Fujita ◽  
Keizo Watanabe

Laminar drag reduction is achieved by using a hydrophobic surface. In this method, fluid slip is applied at the hydrophobic surface. An initial experiment to clarify for a laminar skin friction reduction was conducted using ducts with a highly water-repellent surface. The surface has a fractal-type structure with many fine grooves. Fluid slip at a hydrophobic surface has been analyzed by applying a new wet boundary condition. In this simulation, an internal flow is assumed to be a two-dimensional laminar flow in a rectangular duct and an external flow is assumed to be a two-dimensional laminar flow past a circular cylinder. The VOF technique has been used as the method for tracking gas-liquid interfaces, and the CSF model has been used as the method for modeling surface tension effects. The wet boundary condition for the hydrophobic property on the surface has been determined from the volume ratio in contact with water near the surface. The model with a stable gas-liquid interface and the experimental results of flow past a circular cylinder at Re = 250 without growing the Karman vortex street are made, and these results show that laminar drag reduction occurring due to fluid slip can be explained in this model.


Author(s):  
Hu Yan ◽  
Hatsuki Shiga ◽  
Etsuro Ito ◽  
Toshiyuki Nakagaki ◽  
Seiji Takagi ◽  
...  

Author(s):  
M. Mail ◽  
M. Moosmann ◽  
P. Häger ◽  
W. Barthlott

Extreme water repellent ‘superhydrophobic’ surfaces evolved in plants and animals about 450 Ma: a combination of hydrophobic chemistry and hierarchical structuring causes contact angles of greater than 150°. Technical biomimetic applications and technologies for water repellency, self-cleaning (Lotus Effect) and drag reduction (Salvinia Effect) have become increasingly important in the last two decades. Drag reduction (e.g. for ship hulls) requires the presence of a rather thick and persistent air layer under water. All existing technical solutions are based on fragile elastic hairs, micro-pillars or other solitary structures, preferably with undercuts (Salvinia Effect). We propose and provide experimental data for a novel alternative technology to trap persistent air layers by superhydrophobic grids or meshes superimposed to the solid surface: AirGrids. AirGrids provide a simple and stable solution to generate air trapping surfaces for drag reduction under water as demonstrated by first prototypes. Different architectural solutions, including possible recovery techniques for the air layer under hydrodynamic conditions, are discussed. The most promising target backed by first results is the combination of Air Retaining Grids with the existing microbubble technology. This article is part of the theme issue ‘Bioinspired materials and surfaces for green science and technology (part 2)’.


Sign in / Sign up

Export Citation Format

Share Document