scholarly journals Transfer function identification from the transient response. 1st report Estimation of the characteristic poles.

1985 ◽  
Vol 51 (471) ◽  
pp. 3086-3090
Author(s):  
Kenichi MATSUDA ◽  
Yohji OKADA
1999 ◽  
Author(s):  
Imtiaz Haque ◽  
Juergen Schuller

Abstract The use of neural networks in system identification is an emerging field. Neural networks have become popular in recent years as a means to identify linear and non-linear systems whose characteristics are unknown. The success of sigmoidal networks in parameter identification has been limited. However, harmonic activation-based neural networks, recent arrivals in the field of neural networks, have shown excellent promise in linear and non-linear system parameter identification. They have been shown to have excellent generalization capability, computational parallelism, absence of local minima, and good convergence properties. They can be used in the time and frequency domain. This paper presents the application of a special class of such networks, namely Fourier Series neural networks (FSNN) to vehicle system identification. In this paper, the applications of the FSNNs are limited to the frequency domain. Two examples are presented. The results of the identification are based on simulation data. The first example demonstrates the transfer function identification of a two-degree-of freedom lateral dynamics model of an automobile. The second example involves transfer function identification for a quarter car model. The network set-up for such identification is described. The results of the network identification are compared with theory. The results indicate excellent prediction properties of such networks.


2020 ◽  
Vol 47 (11) ◽  
pp. 1105002
Author(s):  
周睿 Zhou Rui ◽  
张强 Zhang Qiang ◽  
甘永东 Gan Yongdong ◽  
沈锋 Shen Feng

1996 ◽  
Vol 118 (4) ◽  
pp. 795-797
Author(s):  
S. S. Garimella ◽  
K. Srinivasan

Upper bounds on transient response magnitudes for a SISO continuous-time repetitive control system are derived. Limiting the size of these transients is shown to be related to limiting the ∞-norm of a transfer function product of filters used in the repetitive controller. The decay rate of the transients is related to the peak of a function of frequency called the regeneration spectrum, which has previously been shown in the literature to be a measure of the relative stability of the system. Bounds derived here, although conservative, can be useful in the design of the repetitive controller, as illustrated by means of an example.


Sign in / Sign up

Export Citation Format

Share Document