scholarly journals Application of Fluidic-Deice Type Fatigue Testing Machine. Evaluation of Reversed Plane-Bending Fatigue Strength of Cold Rolled Steel Sheets Bent to 90.DEG.V-shape.

1998 ◽  
Vol 64 (628) ◽  
pp. 4863-4868
Author(s):  
Noboru YAHATA ◽  
Masaaki WATANABE ◽  
Hideki YAMAMOTO
2006 ◽  
Vol 306-308 ◽  
pp. 899-904
Author(s):  
Dong Ho Bae ◽  
Won Seok Jung ◽  
J.B. Heo

An effective way to reduce the weight of vehicle body seems to be application of new materials, and such trend is remarkable. Among the various materials for automobile body, stainless steel sheets and cold rolled steel sheets are under the interests. However, in order to guarantee reliability of new material and to establish the long life fatigue design criteria for body structure, it is necessary to assess spot weldability and fatigue strength of spot welded lap joints fabricated under optimized spot welding condition. In this paper, spot weldability of stainless steel sheets, STS301L and STS304L, and cold rolled steel sheets, SPCC and SPCD. Fatigue strength of lap joints spot welded between similar and dissimilar materials were also assessed.


2005 ◽  
Vol 297-300 ◽  
pp. 2883-2887 ◽  
Author(s):  
Dong Ho Bae ◽  
Won Seok Jung ◽  
J.B. Heo

An effective way to reduce the weight of vehicle body seems to be application of new materials, and such trend is remarkable. Among the various materials for vehicle body, stainless steel sheets and cold rolled steel sheets are under the interests. However, in order to guarantee reliability of new material and to establish the long life fatigue design criteria for body structure, it is necessary to assess spot weldability and fatigue strength of spot welded lap joints fabricated under optimized spot welding condition. In this paper, spot weldability of stainless steel sheets, STS304L and STS316L, and cold rolled steel sheets, SPCC and SPCD. Fatigue strength of lap joints spot welded between similar and dissimilar materials were also assessed.


Author(s):  
O Eyercioglu ◽  
D Walton ◽  
T A Dean

To determine the bending fatigue strength of precision forged spur gears and to compare the results with those obtained from conventional cut gears, single tooth bending fatigue tests were carried out on both through-hardened and induction-hardened gear teeth. The gears were produced from rolled bar cut blanks, disc forged blanks or precision forged teeth blanks. For this purpose, a special test fixture was designed and built for an Amsler high-frequency vibrophore fatigue testing machine. The results show that the endurance limit of precision forged gears is significantly higher than those obtained from cut gears. The bending fatigue strength of forged gears was some 12.5 per cent higher than the cut teeth in a through-hardened condition and 8.4 per cent higher for the induction-hardened teeth. The effect of surface roughness at the tooth root area on the bending fatigue strength of the forged gears is also shown.


2003 ◽  
Vol 89 ◽  
pp. 321-326 ◽  
Author(s):  
Leszek B. Magalas ◽  
S. Etienne ◽  
L. David ◽  
T. Malinowski

Sign in / Sign up

Export Citation Format

Share Document