scholarly journals Multi-material topology optimization based on symmetric level set function using the material definition with perfect symmetric property

Author(s):  
Masaki NODA ◽  
Yuki NOGUCHI ◽  
Takayuki YAMADA
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Rolando Yera ◽  
Luisina Forzani ◽  
Carlos Gustavo Méndez ◽  
Alfredo E. Huespe

PurposeThis work presents a topology optimization methodology for designing microarchitectures of phononic crystals. The objective is to get microstructures having, as a consequence of wave propagation phenomena in these media, bandgaps between two specified bands. An additional target is to enlarge the range of frequencies of these bandgaps.Design/methodology/approachThe resulting optimization problem is solved employing an augmented Lagrangian technique based on the proximal point methods. The main primal variable of the Lagrangian function is the characteristic function determining the spatial geometrical arrangement of different phases within the unit cell of the phononic crystal. This characteristic function is defined in terms of a level-set function. Descent directions of the Lagrangian function are evaluated by using the topological derivatives of the eigenvalues obtained through the dispersion relation of the phononic crystal.FindingsThe description of the optimization algorithm is emphasized, and its intrinsic properties to attain adequate phononic crystal topologies are discussed. Particular attention is addressed to validate the analytical expressions of the topological derivative. Application examples for several cases are presented, and the numerical performance of the optimization algorithm for attaining the corresponding solutions is discussed.Originality/valueThe original contribution results in the description and numerical assessment of a topology optimization algorithm using the joint concepts of the level-set function and topological derivative to design phononic crystals.


Author(s):  
Long Jiang ◽  
Shikui Chen ◽  
Xiangmin Jiao

The parametric level set method is an extension of the conventional level set methods for topology optimization. By parameterizing the level set function, conventional levels let methods can be easily coupled with mathematical programming to achieve better numerical robustness and computational efficiency. Furthermore, the parametric level set scheme not only can inherit the original advantages of the conventional level set methods, such as clear boundary representation and high topological changes handling flexibility but also can alleviate some un-preferred features from the conventional level set methods, such as needing re-initialization. However, in the RBF-based parametric level set method, it was difficult to determine the range of the design variables. Moreover, with the mathematically driven optimization process, the level set function often results in significant fluctuations during the optimization process. This brings difficulties in both numerical stability control and material property interpolation. In this paper, an RBF partition of unity collocation method is implemented to create a new type of kernel function termed as the Cardinal Basis Function (CBF), which employed as the kernel function to parameterize the level set function. The advantage of using the CBF is that the range of the design variable, which was the weight factor in conventional RBF, can be explicitly specified. Additionally, a distance regularization energy functional is introduced to maintain a desired distance regularized level set function evolution. With this desired distance regularization feature, the level set evolution is stabilized against significant fluctuations. Besides, the material property interpolation from the level set function to the finite element model can be more accurate.


2011 ◽  
Vol 308-310 ◽  
pp. 1046-1049 ◽  
Author(s):  
Yu Wang ◽  
Zhen Luo

This paper proposes a meshless Galerkin level set method for structural shape and topology optimization of continua. To taking advantage of the implicit free boundary representation scheme, structural design boundary is represented through the introduction of a scalar level set function as its zero level set, to flexibly handle complex shape fidelity and topology changes by maintaining concise and smooth interface. Compactly supported radial basis functions (CSRBFs) are used to parameterize the level set function and also to construct the shape functions for mesh free function approximation. The meshless Galerkin global weak formulation is employed to implement the discretization of the state equations. This provides a pathway to simplify two numerical procedures involved in most conventional level set methods in propagating the discrete level set functions and in approximating the discrete equations, by unifying the two different stages at two sets of grids just in terms of one set of scattered nodes. The proposed level set method has the capability of describing the implicit moving boundaries without remeshing for discontinuities. The motion of the free boundary is just a question of advancing the discrete level set function by finding the design variables of the size optimization in time. One benchmark example is used to demonstrate the effectiveness of the proposed method. The numerical results showcase that this method has the ability to simplify numerical procedures and to avoid numerical difficulties happened in most conventional level set methods. It is straightforward to apply the present method to more advanced shape and topology optimization problems.


2018 ◽  
Vol 140 (7) ◽  
Author(s):  
Benliang Zhu ◽  
Rixin Wang ◽  
Hai Li ◽  
Xianmin Zhang

In level-set-based topology optimization methods, the spatial gradients of the level set field need to be controlled to avoid excessive flatness or steepness at the structural interfaces. One of the most commonly utilized methods is to generalize the traditional Hamilton−Jacobi equation by adding a diffusion term to control the level set function to remain close to a signed distance function near the structural boundaries. This study proposed a new diffusion term and built it into the Hamilton-Jacobi equation. This diffusion term serves two main purposes: (I) maintaining the level set function close to a signed distance function near the structural boundaries, thus avoiding periodic re-initialization, and (II) making the diffusive rate function to be a bounded function so that a relatively large time-step can be used to speed up the evolution of the level set function. A two-phase optimization algorithm is proposed to ensure the stability of the optimization process. The validity of the proposed method is numerically examined on several benchmark design problems in structural topology optimization.


Author(s):  
Yoshifumi Okamoto ◽  
Hiroshi Masuda ◽  
Yutaro Kanda ◽  
Reona Hoshino ◽  
Shinji Wakao

PurposeThe purpose of this paper is the improvement of topology optimization. The scope of the paper is focused on the speedup of optimization. Design/methodology/approachTo achieve the speedup, the method of moving asymptotes (MMA) with constrained condition of level set function is applied instead of solving the Hamilton–Jacobi equation. FindingsThe acceleration of convergence of objective function is drastically improved by the implementation of MMA. Originality/valueNormally, the level set method is solved through the Hamilton–Jacobi equation. However, the possibility of introducing mathematical programming is clear by the constrained condition. Furthermore, the proposed method is suitable for efficiently solving the topology optimization problem in the magnetic field system.


2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Xiaowei Deng ◽  
Yingjun Wang ◽  
Jinhui Yan ◽  
Tao Liu ◽  
Shuting Wang

Optimization of the femur prosthesis is a key issue in femur replacement surgeries that provide a viable option for limb salvage rather than amputation. To overcome the drawback of the conventional techniques that do not support topology optimization of the prosthesis design, a parameterized level set method (LSM) topology optimization with arbitrary geometric constraints is presented. A predefined narrow band along the complex profile of the original femur is preserved by applying the contour method to construct the level set function, while the topology optimization is carried out inside the cavity. The Boolean R-function is adopted to combine the free boundary and geometric constraint level set functions to describe the composite level set function of the design domain. Based on the minimum compliance goal, three different designs of 2D femur prostheses subject to the target cavity fill ratios 34%, 54%, and 74%, respectively, are illustrated.


Sign in / Sign up

Export Citation Format

Share Document