method of moving asymptotes
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 9)

H-INDEX

9
(FIVE YEARS 0)

Author(s):  
Liping Wang ◽  
Renwen Chen ◽  
Yuxiang Zhang ◽  
Chuan Liu

The response charge of piezoelectric speed sensors using a conventional rectangular cantilever is low, which also causes a low sensitivity in speed measurement. To improve the sensor sensitivity, a piezoelectric speed sensor based on a streamlined piezoelectric cantilever is employed in this paper. Furthermore, a theoretical optimization model of the sensor based on Bernstein polynomial equation is established, and a simulation optimization flow work is also proposed. With method of moving asymptotes (MMA) algorithm, more charge output can be obtained than before. The simulation results show that the optimized sensor can output a voltage of 416 mV and obtain a sensitivity of 52 mV/m⋅s−1 when the input speed is 8 m/s. As compared with the values of 300 mV and 37.5 mV/m⋅s−1 in the un-optimized case, the improvement in the sensor sensitivity is up to 38%, which confirms the effectiveness of the proposed method.


2021 ◽  
Vol 11 (7) ◽  
pp. 3175
Author(s):  
Nam H. Kim ◽  
Ting Dong ◽  
David Weinberg ◽  
Jonas Dalidd

In this article, a generalized optimality criteria method is proposed for topology optimization with arbitrary objective function and multiple inequality constraints. This algorithm uses sensitivity information to update both the Lagrange multipliers and design variables. Different from the conventional optimality criteria method, the proposed method does not satisfy constraints at every iteration. Rather, it improves the Lagrange multipliers and design variables such that the optimality criteria are satisfied upon convergence. The main advantages of the proposed method are its capability of handling multiple constraints and computational efficiency. In numerical examples, the proposed method was found to be more than 100 times faster than the optimality criteria method and more than 1000 times faster than the method of moving asymptotes.


Author(s):  
Allal Guessab ◽  
Abderrazak Driouch

In this paper, we introduce an extension of our previous paper, A globally convergent version to the Method of Moving Asymptotes, in a multivariate setting. The proposed multivariate version is a globally convergent result for a new method, which consists iteratively of the solution of a modified version of the method of moving asymptotes. It is shown that the algorithm generated has some desirable properties. We state the conditions under which the present method is guaranteed to converge geometrically. The resulting algorithms are tested numerically and compared with several well-known methods.


Author(s):  
Kalle Kalliorinne ◽  
Andreas Almqvist

The search for the optimal bearing geometry has been on for over a century. In a publication from 1918, Lord Rayleigh revealed the infinitely wide bearing geometry that maximises the load carrying capacity under incompressible flow, i.e. the Rayleigh step bearing. Four decades ago, Rohde, who continued on the same path, revealed the finitely wide bearing geometry that maximises the load carrying capacity, referred to as the Rayleigh-pocket bearing. Since then, the numerical results have been perfected with highly refined meshes, all converging to the same Rayleigh-pocket bearing. During recent years new methods for performing topology optimisations have been developed and one of those is the method of moving asymptotes, frequently used in the area of structural mechanics. In this work, the method of moving asymptotes is employed to find optimal bearing geometries under incompressible flow, for three different objectives. Among the results obtained are (i) show new bearing geometries that maximise the load carrying capacity, which performs better than the ones available, (ii) new bearing geometries minimising the coefficient of friction and (iii) new bearing geometries minimising the friction force for a given load carrying capacity are presented as well.


Author(s):  
Allal Guessab ◽  
Abderrazak Driouch ◽  
Otheman Nouisser

A new modified moving asymptotes method is presented. In each step of the iterative process, a strictly convex approximating subproblem is generated and explicitly solved. In doing so we propose a strategy to incorporate a modified second-order information for the moving asymptotes location. Under natural assumptions, we prove the geometrical convergence. In addition the experimental results reveal that the present method is significantly faster compared to the [1] method, Newton's method and the BFGS Method.


Materials ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 3736
Author(s):  
Hugo A. Alvarez ◽  
Habib R. Zambrano ◽  
Olavo M. Silva

The density based topology optimization procedure represented by the SIMP (Solid isotropic material with penalization) method is the most common technique to solve material distribution optimization problems. It depends on several parameters for the solution, which in general are defined arbitrarily or based on the literature. In this work the influence of the optimization parameters applied to the design of periodic cellular materials were studied. Different filtering schemes, penalization factors, initial guesses, mesh sizes, and optimization solvers were tested. In the obtained results, it was observed that using the Method of Moving Asymptotes (MMA) can be achieved feasible convergent solutions for a large amount of parameters combinations, in comparison, to the global convergent method of moving asymptotes (GCMMA) and optimality criteria. The cases of studies showed that the most robust filtering schemes were the sensitivity average and Helmholtz partial differential equation based filter, compared to the Heaviside projection. The choice of the initial guess demonstrated to be a determining factor in the final topologies obtained.


2019 ◽  
Vol 13 (3) ◽  
pp. 905-917
Author(s):  
Allal Guessab ◽  
Abderrazak Driouch ◽  
Otheman Nouisser

A new modified moving asymptotes method is presented. In each step of the iterative process, a strictly convex approximating subproblem is generated and explicitly solved. In doing so we propose a strategy to incorporate a modified second-order information for the moving asymptotes location. Under natural assumptions, we prove the geometrical convergence. In addition the experimental results reveal that the present method is significantly faster compared to the [1] method, Newton's method and the BFGS Method.


Author(s):  
Daozhong Li ◽  
Stephen Roper ◽  
Il Yong Kim

The Method of Moving Asymptotes (MMA) is one of the well-known optimization algorithms for topology optimization due to its stable numerical performance. Here, this paper simplifies the MMA algorithm by considering the features of topology optimization problem statements and presents a strategy to solve the necessary subproblems based on the primal-dual-interior-point method to further enhance numerical performance. A new scaling mechanism is also introduced to improve searching quality by utilizing the sensitivities of the original problems at the beginning of each MMA iteration. Numerical examples of solving both mathematical problems and topology optimization problems demonstrate the success of this method.


Sign in / Sign up

Export Citation Format

Share Document