Modeling performance of a tile drainage system incorporating mole drainage

2016 ◽  
1998 ◽  
Vol 38 (4-5) ◽  
pp. 103-110 ◽  
Author(s):  
C. S. Tan ◽  
C. F. Drury ◽  
M. Soultani ◽  
I. J. van Wesenbeeck ◽  
H. Y. F. Ng ◽  
...  

Conservation tillage has become an attractive form of agricultural management practices for corn and soybean production on heavy textured soil in southern Ontario because of the potential for improving soil quality. A controlled drainage system combined with conservation tillage practices has also been reported to improve water quality. In Southwestern Ontario, field scale on farm demonstration sites were established in a paired watershed (no-tillage vs. conventional tillage) on clay loam soil to study the effect of tillage system on soil structure and water quality. The sites included controlled drainage and free drainage systems to monitor their effect on nitrate loss in the tile drainage water. Soil structure, organic matter content and water storage in the soil profile were improved with no-tillage (NT) compared to conventional tillage (CT). No-tillage also increased earthworm populations. No-tillage was found to have higher tile drainage volume and nitrate loss which were attributed to an increase in soil macropores from earthworm activity. The controlled drainage system (CD) reduced nitrate loss in tile drainage water by 14% on CT site and 25.5% on NT site compared to the corresponding free drainage system (DR) from May, 1995 to April 30, 1997. No-tillage farming practices are definitely enhanced by using a controlled drainage system for preventing excessive nitrate leaching through tile drainage. Average soybean yields for CT site were about 12 to 14% greater than the NT site in 1995 and 1996. However, drainage systems had very little effect on soybean yields in 1995 and 1996 due to extremely dry growing seasons.


1972 ◽  
Vol 15 (3) ◽  
pp. 0440-0444 ◽  
Author(s):  
E. R. Perrier ◽  
A. J. MacKenzie ◽  
L. B. Grass and H. H. Shull

Wetlands ◽  
2019 ◽  
Vol 40 (3) ◽  
pp. 503-514
Author(s):  
Christine M. VanZomeren ◽  
Jacob F. Berkowitz ◽  
A. Maria Lemke ◽  
Krista G. Kirkham

Abstract Increasing interest focuses on utilizing wetlands to reduce nutrient loading to surface waters. The current study examines soil P storage capacity in three treatment wetlands designed to decrease N loading from an agricultural tile drainage system in Illinois. Adjacent farm field and restored floodplain wetland soils were also evaluated. Results demonstrate that wetland soils sequestered P; however, the magnitude of P retention varied significantly across treatment systems and floodplain wetlands related to differences in soil properties. Soil P storage capacity increased in the direction of water flow, but varied across treatment wetlands; soils ranged from P sinks (5.8 ± 1.5 mg P kg−1) to potential P sources (−17.2 ± 2.0 mg P kg−1). Farm fields displayed the highest water soluble P levels (11.3 ± 1.5 mg P kg−1) and represented the largest potential source of P with a mean storage capacity of −48.6 ± 6.8 mg P kg−1. A phosphorus saturation ratio threshold value of 0.10 differentiated between potential P sources and sinks. Findings suggest wetlands receiving P loadings from tile drainage accumulate soil P over time, but maintaining P removal efficiency in treatment wetlands may require periodic management to decrease soil P concentrations via nutrient removal and/or soil amendments.


Chemosphere ◽  
2021 ◽  
Vol 263 ◽  
pp. 128147
Author(s):  
Xiaoqian Jiang ◽  
Kenneth J.T. Livi ◽  
Mary R. Arenberg ◽  
Ai Chen ◽  
Kai-yue Chen ◽  
...  

HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 503b-503
Author(s):  
Dawn M. Alleman ◽  
Robert W. Langhans ◽  
Ellen Wells

Ability to predict daily leachate volumes in greenhouse production enables strategic planning for the remediation of waste water. A case study greenhouse site (1620ft2) on Cornell campus was chosen because of the tile drainage system installed beneath. Roses `Sonya', `Royalty', and `Mary DeVor' were grown in 1170ft2 of bench and fertigated at bench level with automated spray nozzles. Data collection occurred over a 1.5 year period. Factors considered in modeling included: leaf area, irrigation and leachate volumes, and atmospheric / greenhouse environmental conditions (solar radiation, precipitation, temperature). Separate day and night models resulted, the night model included a condensation factor. Correlation existed between environmental factors, irrigation volume and leachate volume in the day model. In the night model a relationship between environmental factors and condensation was evident.


Sign in / Sign up

Export Citation Format

Share Document