A Visual Servo Control Method for Tomato Cluster-Picking Manipulators Based on a T-S Fuzzy Neural Network

2021 ◽  
Vol 64 (2) ◽  
pp. 529-543
Author(s):  
Xifeng Liang ◽  
Ming Peng ◽  
Jie Lu ◽  
Chao Qin

HighlightsA T-S fuzzy neural network was applied to the visual servo control system of a tomato picking manipulator.The T-S fuzzy neural network structure was designed, and collected data were used to train the neural network model.A visual servo control system for the picking manipulator based on the neural network was designed and tested.The T-S fuzzy neural network was superior to a BP neural network in visual servo control of the picking manipulator.Abstract. To reduce the computational load of image Jacobian matrix estimation and to avoid the appearance of singularity of a Jacobian matrix in the visual servo control of a picking manipulator, a T-S fuzzy neural network algorithm is proposed to replace the image Jacobian matrix. This better fits the hand-eye relationship by combining the knowledge structure of fuzzy reasoning with the self-learning ability of a neural network. The T-S fuzzy neural network was trained and tested by collecting the variation data of image features and joint angles; after training, the T-S fuzzy neural network was used to predict the joint angles of the picking manipulator. Simulation results show that the square sum of training errors and testing errors were 0.017 and 0.032, respectively, after training the T-S fuzzy neural network. A T-S fuzzy neural network controller was applied to the visual servo system of the picking robot, and the test results show that the average difference between the end-effector and the ultimate target location of the visual servo system based on the T-S fuzzy neural network controller was 0.0037 m, which was 79.44% less than that of the visual servo system based on a BP neural network. The final average error of image features was between 0.52 and 3.25 pixels, which was 74.932% less than that of the visual servo system based on the BP neural network. Keywords: Picking manipulator, Tomato clusters, T-S fuzzy neural network, Visual servoing.

2014 ◽  
Vol 8 (1) ◽  
pp. 916-921
Author(s):  
Yuan Yuan ◽  
Wenjun Meng ◽  
Xiaoxia Sun

To address deficiencies in the process of fault diagnosis of belt conveyor, this study uses a BP neural network algorithm combined with fuzzy theory to provide an intelligent fault diagnosis method for belt conveyor and to establish a BP neural network fault diagnosis model with a predictive function. Matlab is used to simulate the fuzzy BP neural network fault diagnosis of the belt conveyor. Results show that the fuzzy neural network can filter out unnecessary information; save time and space; and improve the fault diagnosis recognition, classification, and fault location capabilities of belt conveyor. The proposed model has high practical value for engineering.


2011 ◽  
Vol 110-116 ◽  
pp. 4076-4084
Author(s):  
Hai Cun Du

In this paper, we determine the fuzzy control strategy of inverter air conditioner, the fuzzy control model structure, the neural network and fuzzy control technology, structural design of the fuzzy neural network controller as well as the neural network predictor FNNC NNP. Simulation results show that the fuzzy neural network controller can control the accuracy greatly improved the compressor, and the control system has strong adaptability to achieve a truly intelligent; model of the controller design and implementation of technology are mainly from the practical point of view, which is practical and feasible.


Kybernetes ◽  
2009 ◽  
Vol 38 (10) ◽  
pp. 1709-1717 ◽  
Author(s):  
Zhihuai Xiao ◽  
Jiang Guo ◽  
Hongtao Zeng ◽  
Pan Zhou ◽  
Shuqing Wang

Author(s):  
Yangbing Zheng ◽  
Xiao Xue ◽  
Jisong Zhang

In order to improve the fault diagnosis effectiveness of hydraulic system in erecting devices, the fuzzy neural neural network is applied to carry out fault diagnosis of hydraulic system. Firstly, the main faults of hydraulic system of erecting mechanism are summarized. The main faults of hydraulic system of erecting devices concludes abnormal noise, high temperature of hydraulic oil of hydraulic system, leakage of hydraulic system, low operating speed of hydraulic system, and the characteristics of different faults are analyzed. Secondly, basic theory of fuzzy neural network is studied, and the framework of fuzzy neural network is designed. The inputting layer, fuzzy layer, fuzzy relation layer, relationship layer after fuzzy operation and outputting layer of fuzzy neural network are designed, and the corresponding mathematical models are confirmed. The analysis procedure of fuzzy neural network is established. Thirdly, simulation analysis is carried out for a hydraulic system in erecting device, the BP neural network reaches convergence after 600 times iterations, and the fuzzy neural network reaches convergence after 400 times iterations, fuzzy neural network can obtain higher accuracy than BP neural network, and running time of fuzzy neural network is less than that of BP neural network, therefore, simulation results show that the fuzzy neural network can effectively improve the fault diagnosis efficiency and precision. Therefore, the fuzzy neural network is reliable for fault diagnosis of hydraulic system in erecting devices, which has higher fault diagnosis effect, which can provide the theory basis for healthy detection of hydraulic system in erecting devices.


2013 ◽  
Vol 473 ◽  
pp. 243-246
Author(s):  
Guo Li ◽  
Cheng Yao Jia ◽  
Wen Zheng Zhang

In order to make a research on the vehicle`s ABS and AFS system,the fuzzy neural network controller was designed on the basis of the electric vehicle`s steering and braking models. Then the genetic algorithms was used to improve the parameters of the membership function. Finally, the Matlab/Simulink simulation software has been used in the simulation analysis. The result of simulation proves that the designed system has good tracking performance and more stronger systemic robustness .


Sign in / Sign up

Export Citation Format

Share Document