Tissue Preparation and Next-generation Sequencing Workflows for Oncology Testing

2014 ◽  
Vol 1 (4) ◽  
pp. 115-120
Author(s):  
Ronald van Eijk ◽  
Stijn Crobach
2021 ◽  
Author(s):  
◽  
Davide Borroni ◽  

Title: Next-generation sequencing for the detection of microorganisms present in human donor corneal preservation medium. Aim: To detect the presence of microorganisms in the storage media of human donor corneas using next-generation sequencing method. Methods: Seven samples from organ culture (OC) group (Cornea Max, Eurobio, Les Ulis, France) with one control (sterile media without any cornea) and seven samples from hypothermic storage group (Cornea Cold, Eurobio) with one control were used for this study. The corneas were placed in the respective storage media for 14 days before collecting the samples. Storage media (2 mL) from each sample were collected in RNAase-free tubes and shipped for ribosomal RNA sequencing of 16S and 18S. Simultaneously, another 1 mL of media sample was used for conventional diagnostic method (CDM) using Bactec instruments. Results: In both, OC and hypothermic storage and control samples, the most abundant genera were Pseudomonas, Comamonas, Stenotrophomonas, Alcanivorax, Brevundimonas and Nitrobacter. Acidovorax, Acetobacter and Hydrogenophilus were detected mostly in the hypothermic storage group. The most abundant fungal pathogen detected belonged to the genus Malassezia, which was found in both the storage conditions. CDM was negative for microorganisms in all the samples. Conclusion: Metagenomics provides full taxonomic profiling of the detected genomic material of the organisms and thus has the potential to deliver a much wider microbiological diagnostic approach than CDM. The costs and turnaround time need to be reduced, and; the detection of viable organisms would help this technology to be introduced into routine clinical practice.


2021 ◽  
Author(s):  
◽  
Davide Borroni ◽  

Title: Next-generation sequencing for the detection of microorganisms present in human donor corneal preservation medium. Aim: To detect the presence of microorganisms in the storage media of human donor corneas using next-generation sequencing method. Methods: Seven samples from organ culture (OC) group (Cornea Max, Eurobio, Les Ulis, France) with one control (sterile media without any cornea) and seven samples from hypothermic storage group (Cornea Cold, Eurobio) with one control were used for this study. The corneas were placed in the respective storage media for 14 days before collecting the samples. Storage media (2 mL) from each sample were collected in RNAase-free tubes and shipped for ribosomal RNA sequencing of 16S and 18S. Simultaneously, another 1 mL of media sample was used for conventional diagnostic method (CDM) using Bactec instruments. Results: In both, OC and hypothermic storage and control samples, the most abundant genera were Pseudomonas, Comamonas, Stenotrophomonas, Alcanivorax, Brevundimonas and Nitrobacter. Acidovorax, Acetobacter and Hydrogenophilus were detected mostly in the hypothermic storage group. The most abundant fungal pathogen detected belonged to the genus Malassezia, which was found in both the storage conditions. CDM was negative for microorganisms in all the samples. Conclusion: Metagenomics provides full taxonomic profiling of the detected genomic material of the organisms and thus has the potential to deliver a much wider microbiological diagnostic approach than CDM. The costs and turnaround time need to be reduced, and; the detection of viable organisms would help this technology to be introduced into routine clinical practice.


2020 ◽  
Vol 11 (05) ◽  
pp. 232-238
Author(s):  
Marcus Kleber

ZUSAMMENFASSUNGDas kolorektale Karzinom (KRK) ist einer der häufigsten malignen Tumoren in Deutschland. Einer frühzeitigen Diagnostik kommt große Bedeutung zu. Goldstandard ist hier die Koloskopie. Die aktuelle S3-Leitlinie Kolorektales Karzinom empfiehlt zum KRK-Screening den fäkalen okkulten Bluttest. Für das Monitoring von Patienten vor und nach Tumorresektion werden die Messung des Carcinoembryonalen Antigens (CEA) und der Mikrosatellitenstabilität empfohlen. Für die Auswahl der korrekten Chemotherapie scheint derzeit eine Überprüfung des Mutationsstatus, mindestens des KRAS-Gens und des BRAF-Gens, sinnvoll zu sein. Eine Reihe an neuartigen Tumormarkern befindet sich momentan in der Entwicklung, hat jedoch noch nicht die Reife für eine mögliche Anwendung in der Routinediagnostik erreicht. Den schnellsten Weg in die breite Anwendung können Next-Generation-Sequencing-basierte genetische Tests finden.


Sign in / Sign up

Export Citation Format

Share Document