taxonomic profiling
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 58)

H-INDEX

16
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Katherine Marsay ◽  
Yuri Koucherov ◽  
Keren Davidov ◽  
Evgenia Iankelevich Kounio ◽  
Sheli Itzahri ◽  
...  

Marine plastic debris serve as substrates for the colonization of a variety of prokaryote and eukaryote organisms. Of particular interest are the microorganisms that have adapted to thrive on plastic as they may contain genes, enzymes or pathways involved in the colonization or metabolism of plastics. We implemented DNA metabarcoding with nanopore MinION sequencing to compare the one-month-old biomes of hydrolysable (polyethylene terephthalate) and non-hydrolysable (polyethylene) plastics surfaces vs. those of glass and the surrounding water in a Mediterranean Sea marina. We sequenced longer 16S rRNA, 18S rRNA and ITS barcode loci for a more comprehensive taxonomic profiling of the bacterial, protist and fungal communities respectively. Long read sequencing enabled high-resolution mapping to genera and species. Using differential abundance screening we identified 32 bacteria and five eukaryotes, that were significantly differentially abundant on PE or PET compared to glass. This approach may be used in the future to characterize the plastisphere communities and to screen for microorganisms with a plastic-metabolism potential.


2021 ◽  
Author(s):  
◽  
Davide Borroni ◽  

Title: Next-generation sequencing for the detection of microorganisms present in human donor corneal preservation medium. Aim: To detect the presence of microorganisms in the storage media of human donor corneas using next-generation sequencing method. Methods: Seven samples from organ culture (OC) group (Cornea Max, Eurobio, Les Ulis, France) with one control (sterile media without any cornea) and seven samples from hypothermic storage group (Cornea Cold, Eurobio) with one control were used for this study. The corneas were placed in the respective storage media for 14 days before collecting the samples. Storage media (2 mL) from each sample were collected in RNAase-free tubes and shipped for ribosomal RNA sequencing of 16S and 18S. Simultaneously, another 1 mL of media sample was used for conventional diagnostic method (CDM) using Bactec instruments. Results: In both, OC and hypothermic storage and control samples, the most abundant genera were Pseudomonas, Comamonas, Stenotrophomonas, Alcanivorax, Brevundimonas and Nitrobacter. Acidovorax, Acetobacter and Hydrogenophilus were detected mostly in the hypothermic storage group. The most abundant fungal pathogen detected belonged to the genus Malassezia, which was found in both the storage conditions. CDM was negative for microorganisms in all the samples. Conclusion: Metagenomics provides full taxonomic profiling of the detected genomic material of the organisms and thus has the potential to deliver a much wider microbiological diagnostic approach than CDM. The costs and turnaround time need to be reduced, and; the detection of viable organisms would help this technology to be introduced into routine clinical practice.


2021 ◽  
Author(s):  
◽  
Davide Borroni ◽  

Title: Next-generation sequencing for the detection of microorganisms present in human donor corneal preservation medium. Aim: To detect the presence of microorganisms in the storage media of human donor corneas using next-generation sequencing method. Methods: Seven samples from organ culture (OC) group (Cornea Max, Eurobio, Les Ulis, France) with one control (sterile media without any cornea) and seven samples from hypothermic storage group (Cornea Cold, Eurobio) with one control were used for this study. The corneas were placed in the respective storage media for 14 days before collecting the samples. Storage media (2 mL) from each sample were collected in RNAase-free tubes and shipped for ribosomal RNA sequencing of 16S and 18S. Simultaneously, another 1 mL of media sample was used for conventional diagnostic method (CDM) using Bactec instruments. Results: In both, OC and hypothermic storage and control samples, the most abundant genera were Pseudomonas, Comamonas, Stenotrophomonas, Alcanivorax, Brevundimonas and Nitrobacter. Acidovorax, Acetobacter and Hydrogenophilus were detected mostly in the hypothermic storage group. The most abundant fungal pathogen detected belonged to the genus Malassezia, which was found in both the storage conditions. CDM was negative for microorganisms in all the samples. Conclusion: Metagenomics provides full taxonomic profiling of the detected genomic material of the organisms and thus has the potential to deliver a much wider microbiological diagnostic approach than CDM. The costs and turnaround time need to be reduced, and; the detection of viable organisms would help this technology to be introduced into routine clinical practice.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lu Zhang ◽  
FengXin Chen ◽  
Zhan Zeng ◽  
Mengjiao Xu ◽  
Fangfang Sun ◽  
...  

Metagenomics is a new approach to study microorganisms obtained from a specific environment by functional gene screening or sequencing analysis. Metagenomics studies focus on microbial diversity, community constitute, genetic and evolutionary relationships, functional activities, and interactions and relationships with the environment. Sequencing technologies have evolved from shotgun sequencing to high-throughput, next-generation sequencing (NGS), and third-generation sequencing (TGS). NGS and TGS have shown the advantage of rapid detection of pathogenic microorganisms. With the help of new algorithms, we can better perform the taxonomic profiling and gene prediction of microbial species. Functional metagenomics is helpful to screen new bioactive substances and new functional genes from microorganisms and microbial metabolites. In this article, basic steps, classification, and applications of metagenomics are reviewed.


2021 ◽  
Author(s):  
Alexander Dietrich ◽  
Monica Steffi Matchado ◽  
Maximilian Zwiebel ◽  
Benjamin Ölke ◽  
Michael Lauber ◽  
...  

Background: 16S rRNA gene profiling is currently the most widely used technique in microbiome research and allows for studying microbial diversity, taxonomic profiling, phylogenetics, functional and network analysis. While a plethora of tools have been developed for the analysis of 16S rRNA gene data, only few platforms offer a user-friendly interface and none comprehensively cover the whole analysis pipeline from raw data processing down to complex analysis. Results: We introduce Namco, an R shiny application that offers a streamlined interface and serves as a one-stop solution for microbiome analysis. We demonstrate Namco's capabilities by studying the association between rich fibre diet and the gut microbiota composition. Namco helped to prove the hypothesis that butyrate-producing bacteria are prompted by fibre-enriched intervention. Conclusion: Namco provides a broad range of features from raw data processing and basic statistics down to machine learning and network analysis, thus covering complex data analysis tasks that are not comprehensively covered elsewhere. Namco is freely available at https://exbio.wzw.tum.de/namco/.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260314
Author(s):  
Nazima Habibi ◽  
Abu Salim Mustafa ◽  
Mohd Wasif Khan

The microorganisms at the workplace contribute towards a large portion of the biodiversity a person encounters in his or her life. Health care professionals are often at risk due to their frontline nature of work. Competition and cooperation between nasal bacterial communities of individuals working in a health care setting have been shown to mediate pathogenic microbes. Therefore, we investigated the nasal bacterial community of 47 healthy individuals working in a clinical research laboratory in Kuwait. The taxonomic profiling and core microbiome analysis identified three pre-dominant genera as Corynebacterium (15.0%), Staphylococcus (10.3%) and, Moraxella (10.0%). All the bacterial genera exhibited seasonal variations in summer, winter, autumn and spring. SparCC correlation network analysis revealed positive and negative correlations among the classified genera. A rich set of 16 genera (q < 0.05) were significantly differentially abundant (LEfSe) across the four seasons. The highest species counts, richness and evenness (P < 0.005) were recorded in autumn. Community structure profiling indicated that the entire bacterial population followed a seasonal distribution (R2-0.371; P < 0.001). Other demographic factors such as age, gender and, ethnicity contributed minimally towards community clustering in a closed indoor laboratory setting. Intra-personal diversity also witnessed rich species variety (maximum 6.8 folds). Seasonal changes in the indoor working place in conjunction with the outdoor atmosphere seems to be important for the variations in the nasal bacterial communities of professionals working in a health care setting.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259842
Author(s):  
Harutaro Kenmotsu ◽  
Emi Takabayashi ◽  
Akinori Takase ◽  
Yuu Hirose ◽  
Toshihiko Eki

Nematodes are abundant metazoans that play crucial roles in nutrient recycle in the pedosphere. Although high-throughput amplicon sequencing is a powerful tool for the taxonomic profiling of soil nematodes, polymerase chain reaction (PCR) primers for amplification of the 18S ribosomal RNA (SSU) gene and preparation of template DNAs have not been sufficiently evaluated. We investigated nematode community structure in copse soil using four nematode-specific (regions 1–4) and two universal (regions U1 and U2) primer sets for the SSU gene regions with two DNAs prepared from copse-derived mixed nematodes and whole soil. The major nematode-derived sequence variants (SVs) identified in each region was detected in both template DNAs. Order level taxonomy and feeding type of identified nematode-derived SVs were distantly related between the two DNA preparations, and the region U2 was closely related to region 4 in the non-metric multidimensional scaling (NMDS) based on Bray-Curtis dissimilarity. Thus, the universal primers for region U2 could be used to analyze soil nematode communities. We further applied this method to analyze the nematodes living in two sampling sites of a sweet potato-cultivated field, where the plants were differently growing. The structure of nematode-derived SVs from the two sites was distantly related in the principal coordinate analysis (PCoA) with weighted unifrac distances, suggesting their distinct soil environments. The resultant ecophysiological status of the nematode communities in the copse and field on the basis of feeding behavior and maturity indices was fairly consistent with those of the copse- and the cultivated house garden-derived nematodes in prior studies. These findings will be useful for the DNA metabarcoding of soil eukaryotes, including nematodes, using soil DNAs.


Author(s):  
Shyam L Kandel ◽  
Peter Montgomery Henry ◽  
Polly H. Goldman ◽  
Beiquan Mou ◽  
Steven J Klosterman

The worldwide distribution of plant seeds can disseminate beneficial and plant pathogenic microorganisms. This phenomenon is of particular concern where seed production is geographically isolated from crop production, as is the case with spinach in the United States. We aimed to characterize the structure and function of spinach seed microbiomes in commercial spinach seed lots originating from Europe and New Zealand. The seed lots we analyzed were infested with Peronospora effusa and Verticillium dahliae, only infested with V. dahliae, or not infested with either of these pathogens. The microbial taxonomic composition and gene function (assessed by Gene Ontology (GO) terms) of spinach seeds were highly influenced by geographic origin and the status of pathogen infestation. Through taxonomic profiling, we found that potentially plant beneficial bacterial genera such as Pseudomonas and Pantoea were the most abundant taxa both in infested and non-infested seeds, and Stenotrophomonas was observed in seed lots infested with P. effusa and V. dahliae. Many potential plant pathogens that are not known to be associated with spinach seed were also discovered by metagenomic analysis, including Sclerotinia sclerotiorum, Botrytis cinerea, Bipolaris sorokiniana, Fusarium pseudograminearum, Alternaria brassicae, Parastagonospora nodorum, and Pyrenophora teres f. teres. Our analysis of the function of prokaryotic genes in de novo assembled metagenomes revealed distinct GO terms associated with the geographic origin of seed lots. This work provides an important first step toward identifying spinach seed-borne microorganisms that could be utilized to improve plant health and plant pathogens that could be inadvertently carried to new locations.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ji-Hee Kim ◽  
Sang-Mo Son ◽  
Hyunjoon Park ◽  
Byoung Kook Kim ◽  
In Suk Choi ◽  
...  

AbstractThe interest in skin microbiome differences by ethnicity, age, and gender is increasing. Compared to other ethnic groups, studies on the skin microbiome of Koreans remains insufficient; we investigated facial skin microbiome characteristics according to gender and age among Koreans. Fifty-one healthy participants were recruited, the facial skin characteristics of each donor were investigated, their skin bacterial DNA was isolated and metagenomic analysis was performed. The donors were divided into two groups for age and sex each to analyze their skin microbiomes. Moreover, we investigated the correlation between the skin microbiome and clinical characteristics. The alpha diversity of the skin microbiome was significantly higher in the elderly, and beta diversity was significantly different according to age. The comparative skin microbials showed that the genus Lawsonella was more abundant in the younger age group, and Enhydrobacter was predominant in the older age group. Staphylococcus and Corynebacterium were more abundant in males, while Lactobacillus was more abundant in females. Lawsonella had a negative correlation with skin moisture and brown spots. Staphylococcus and Corynebacterium both had negative correlations with the number of UV spots and positive correlations with transepidermal water loss (TEWL). Furthermore, Staphylococcus aureus had a negative correlation with skin moisture parameters.


2021 ◽  
Author(s):  
Arkadiy I Garber ◽  
Catherine R Armbruster ◽  
Stella E Lee ◽  
Vaughn S Cooper ◽  
Jennifer M Bomberger ◽  
...  

Shotgun sequencing of cultured microbial isolates/individual eukaryotes (whole-genome sequencing) and microbial communities (metagenomics) has become commonplace in biology. Very often, sequenced samples encompass organisms spanning multiple domains of life, necessitating increasingly elaborate software for accurate taxonomic classification of assembled sequences. While many software tools for taxonomic classification exist, SprayNPray offers a quick and user-friendly, semi- automated approach, allowing users to separate contigs by taxonomy (and other metrics) of interest. Easy installation, usage, and intuitive output, which is amenable to visual inspection and/or further computational parsing, will reduce barriers for biologists beginning to analyze genomes and metagenomes. This approach can be used for broad-level overviews, preliminary analyses, or as a supplement to other taxonomic classification or binning software. SprayNPray profiles contigs using multiple metrics, including closest homologs from a user-specified reference database, gene density, read coverage, GC content, tetranucleotide frequency, and codon-usage bias. The output from this software is designed to allow users to spot-check metagenome-assembled genomes, identify, and remove contigs from putative contaminants in isolate assemblies, identify bacteria in eukaryotic assemblies (and vice-versa), and identify possible horizontal gene transfer events.


Sign in / Sign up

Export Citation Format

Share Document