scholarly journals Proof of some theorems on recursively enumerable sets.

1962 ◽  
Vol 3 (2) ◽  
pp. 65-74 ◽  
Author(s):  
Thoralf Skolem
Author(s):  
Artiom Alhazov ◽  
Rudolf Freund ◽  
Sergiu Ivanov

AbstractCatalytic P systems are among the first variants of membrane systems ever considered in this area. This variant of systems also features some prominent computational complexity questions, and in particular the problem of using only one catalyst in the whole system: is one catalyst enough to allow for generating all recursively enumerable sets of multisets? Several additional ingredients have been shown to be sufficient for obtaining computational completeness even with only one catalyst. In this paper, we show that one catalyst is sufficient for obtaining computational completeness if either catalytic rules have weak priority over non-catalytic rules or else instead of the standard maximally parallel derivation mode, we use the derivation mode maxobjects, i.e., we only take those multisets of rules which affect the maximal number of objects in the underlying configuration.


1999 ◽  
Vol 64 (4) ◽  
pp. 1407-1425
Author(s):  
Claes Strannegård

AbstractWe investigate the modal logic of interpretability over Peano arithmetic. Our main result is a compactness theorem that extends the arithmetical completeness theorem for the interpretability logic ILMω. This extension concerns recursively enumerable sets of formulas of interpretability logic (rather than single formulas). As corollaries we obtain a uniform arithmetical completeness theorem for the interpretability logic ILM and a partial answer to a question of Orey from 1961. After some simplifications, we also obtain Shavrukov's embedding theorem for Magari algebras (a.k.a. diagonalizable algebras).


1977 ◽  
Vol 29 (4) ◽  
pp. 794-805 ◽  
Author(s):  
Nancy Johnson

In [3] Hay proves generalizations of Rice's Theorem and the Rice-Shapiro Theorem for differences of recursively enumerable sets (d.r.e. sets). The original Rice Theorem [5, p. 3G4, Corollary B] says that the index set of a class C of r.e. sets is recursive if and only if C is empty or C contains all r.e. sets. The Rice-Shapiro Theorem conjectured by Rice [5] and proved independently by McNaughton, Shapiro, and Myhill [4] says that the index set of a class C of r.e. sets is r.e. if and only if C is empty or C consists of all r.e. sets which extend some element of a canonically enumerable class of finite sets. Since a d.r.e. set is a difference of r.e. sets, a d.r.e. set has an index associated with it, namely, the pair of indices of the r.e. sets of which it is the difference.


Sign in / Sign up

Export Citation Format

Share Document