Sedimentary and Tectonic Controls of Uranium Mineralization in Morrison Formation (Upper Jurassic) of South-Central Utah: ABSTRACT

AAPG Bulletin ◽  
1979 ◽  
Vol 63 ◽  
Author(s):  
Fred Peterson
Geosphere ◽  
2021 ◽  
Author(s):  
John I. Ejembi ◽  
Sally L. Potter-McIntyre ◽  
Glenn R. Sharman ◽  
Tyson M. Smith ◽  
Joel E. Saylor ◽  
...  

Middle to Upper Jurassic strata in the Paradox Basin and Central Colorado trough (CCT; south­western United States) record a pronounced change in sediment dispersal from dominantly aeolian deposition with an Appalachian source (Entrada Sandstone) to dominantly fluvial deposi­tion with a source in the Mogollon and/or Sevier orogenic highlands (Salt Wash Member of the Morrison Formation). An enigmatic abundance of Cambrian (ca. 527–519 Ma) grains at this prove­nance transition in the CCT at Escalante Canyon, Colorado, was recently suggested to reflect a local sediment source from the Ancestral Front Range, despite previous interpretations that local base­ment uplifts were largely buried by Middle to Late Jurassic time. This study aims to delineate spatial and tem­poral patterns in provenance of these Jurassic sandstones containing Cambrian grains within the Paradox Basin and CCT using sandstone petrog­raphy, detrital zircon U-Pb geochronology, and detrital zircon trace elemental and rare-earth ele­mental (REE) geochemistry. We report 7887 new U-Pb detrital zircon analyses from 31 sandstone samples collected within seven transects in west­ern Colorado and eastern Utah. Three clusters of zircon ages are consistently present (1.53–1.3 Ga, 1.3–0.9 Ga, and 500–300 Ma) that are interpreted to reflect sources associated with the Appalachian orogen in southeastern Laurentia (mid-continent, Grenville, Appalachian, and peri-Gondwanan terranes). Ca. 540–500 Ma zircon grains are anom­alously abundant locally in the uppermost Entrada Sandstone and Wanakah Formation but are either lacking or present in small fractions in the overlying Salt Wash and Tidwell Members of the Morrison Formation. A comparison of zircon REE geochem­istry between Cambrian detrital zircon and igneous zircon from potential sources shows that these 540–500 Ma detrital zircon are primarily magmatic. Although variability in both detrital and igneous REE concentrations precludes definitive identifica­tion of provenance, several considerations suggest that distal sources from the Cambrian granitic and rhyolitic provinces of the Southern Oklahoma aulacogen is also likely, in addition to a proximal source identified in the McClure Mountain syenite of the Wet Mountains, Colorado. The abundance of Cambrian grains in samples from the central CCT, particularly in the Entrada Sandstone and Wana­kah Formation, suggests northwesterly sediment transport within the CCT, with sediment sourced from Ancestral Rocky Mountains uplifts of the southern Wet Mountains and/or Amarillo-Wichita Mountains in southwestern Oklahoma. The lack of Cambrian grains within the Paradox Basin sug­gests that the Uncompahgre uplift (southwestern Colorado) acted as a barrier to sediment transport from the CCT.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e7803 ◽  
Author(s):  
Daniel J. Chure ◽  
Mark A. Loewen

Allosaurus is one of the best known theropod dinosaurs from the Jurassic and a crucial taxon in phylogenetic analyses. On the basis of an in-depth, firsthand study of the bulk of Allosaurus specimens housed in North American institutions, we describe here a new theropod dinosaur from the Upper Jurassic Morrison Formation of Western North America, Allosaurus jimmadseni sp. nov., based upon a remarkably complete articulated skeleton and skull and a second specimen with an articulated skull and associated skeleton. The present study also assigns several other specimens to this new species, Allosaurus jimmadseni, which is characterized by a number of autapomorphies present on the dermal skull roof and additional characters present in the postcrania. In particular, whereas the ventral margin of the jugal of Allosaurus fragilis has pronounced sigmoidal convexity, the ventral margin is virtually straight in Allosaurus jimmadseni. The paired nasals of Allosaurus jimmadseni possess bilateral, blade-like crests along the lateral margin, forming a pronounced nasolacrimal crest that is absent in Allosaurus fragilis.


Sign in / Sign up

Export Citation Format

Share Document