detrital zircon geochronology
Recently Published Documents


TOTAL DOCUMENTS

398
(FIVE YEARS 127)

H-INDEX

40
(FIVE YEARS 5)

2022 ◽  
pp. SP521-2021-168
Author(s):  
Jun Wang ◽  
Yujie Yuan ◽  
Dexian Zhang ◽  
Su-Chin Chang

AbstractSituated within the southern segment of the South China Block (SCB), the Ganzhou Basin formed due to subduction of the paleo-Pacific plate beneath to the SCB. Late Cretaceous successions in this basin consist of fluvial and lacustrine facies red beds hosting abundant dinosaur and dinosaur egg fossils. This study reports detrital zircon geochronological data from a crystallized tuff and four sandstones found in the Late Cretaceous Ganzhou Group of the Ganzhou Basin. Age distributions included four major age subpopulations of predominantly Triassic, Devonian-Ordovician, Neoproterozoic and Paleoproterozoic ages. These indicate source material derived from Yanshanian and Triassic granitoids as well as from Kwangsian and Jiangnan orogens. Age signatures generally resemble those recorded in the adjacent Nanxiong Basin but also include distinctive features. Provenance signatures from successive units indicate a tectonic transition from intracontinental extension at ∼120 Ma to compression near the Cretaceous/Paleogene boundary. This tectonic transition was probably driven by continent-continent collision between the Indian and Eurasian plates, as well as by a shift in the subduction direction of the paleo-Pacific plate beneath the Eurasian plate.Supplementary material at https://doi.org/10.6084/m9.figshare.c.5776518


Geosphere ◽  
2021 ◽  
Author(s):  
Ann E. H. Hanson ◽  
Stacia M. Gordon ◽  
Kyle T. Ashley ◽  
Robert B. Miller ◽  
Elizabeth Langdon-Lassagne

The rheology and composition of arc crust and the overall evolution of continental magmatic arcs can be affected by sediment incorporation events. The exhumed Cretaceous–Eocene North Cascades arc exposes abundant metasedimentary rocks that were incorporated into the arc during multiple events. This study uses field relationships, detrital zircon geochronology, bulk rock geochemistry, geothermometry, and quartz­in­garnet geobarometry to distinguish approximate contacts and emplacement depths for different metasedimentary units to better understand their protolith incorporation history and impact on the arc. The Skagit Gneiss Complex is one of the main deep crustal units of the North Cascades arc. It includes metasedimentary rocks with distinct detrital zircon signatures: Proterozoic–Cretaceous (Group 1) or Triassic–Cretaceous (Group 2) zircon populations. Both metasedimentary groups achieved near­ peak metamorphic conditions of 640–800 °C and 5.5–7.9 kbar; several Group 2 samples reveal the higher pressures. A third group of metasedimentary rocks, which was previously interpreted as metamorphosed equivalents of backarc sediments (Group 3), exhibited unimodal Triassic or bimodal Late Jurassic–Early Cretaceous detrital zircon signatures and achieved near­peak conditions of 570–700 °C and 8.7–10.5 kbar. The combined field and analytical data indicate that protoliths of Group 1 and Group 2 metasedimentary rocks were successively deposited in a forearc basin and underthrusted into the arc as a relatively coherent body. Group 3 backarc sediments were incorporated into the arc along a transpressional step­over zone. The incorporation of both forearc and backarc sediments was likely facilitated by arc magmatism that weakened arc crust in combination with regional transpression.


2021 ◽  
Vol 62 (12) ◽  
pp. 1331-1349
Author(s):  
V.B. Khubanov ◽  
A.A. Tsygankov ◽  
G.N. Burmakina

Abstract —We present results of U–Pb (LA-ICP-MS) dating of detrital zircons from the alluvial deposits of the Angarakan River (North Muya Ridge, northern Baikal region), whose drainage basin is composed mainly of granitoids of the Barguzin Complex, typomorphic for the late Paleozoic Angara–Vitim batholith (AVB). Three age clusters with peaks at 728, 423, and 314 Ma have been identified in the studied population of detrital zircons. It is shown that small outliers of igneous and metamorphic rocks, probably similar to the large AVB roof pendants mapped beyond the drainage basin, are the source of Neoproterozoic and early Paleozoic zircons. The late Paleozoic cluster comprises two close peaks at 314 and 28 Ma, which totally “overlap” with the time of the AVB formation and mark a granitoid source of the zircons. The results of detrital-zircon geochronology, together with the data on bedrocks, point to the prolonged (~40 Myr) formation of the AVB, but the intensity of magmatism during this period calls for additional study. Based on the analysis of published geological, geochemical, and geochronological data, we assume that the AVB resulted from the plume–lithosphere interaction that began in the compression setting and gave way to extension 305–300 Ma (the Carboniferous–Permian boundary), which caused replacement of “crustal” granitoids by granitoids formed from a mixed mantle–crustal source.


2021 ◽  
Vol 273 ◽  
pp. 107201
Author(s):  
Sarah N. Dendy ◽  
William R. Guenthner ◽  
David A. Grimley ◽  
Jessica L. Conroy ◽  
Ron C. Counts

2021 ◽  
Vol 365 ◽  
pp. 106381
Author(s):  
Marina Seraine ◽  
José Eloi Guimarães Campos ◽  
Marco Antonio Caçador Martins-Ferreira ◽  
Carlos José Souza de Alvarenga ◽  
Farid Chemale ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document