paradox basin
Recently Published Documents


TOTAL DOCUMENTS

274
(FIVE YEARS 38)

H-INDEX

10
(FIVE YEARS 0)

2022 ◽  
Author(s):  
Ji-Hyun Kim ◽  
et al.

Table S1: (ST1). PHREEQC inverse mixing modeling for the Mississippian Leadville Ls brine (Solution 3) assumed to be evolved from a mixture of the meteoric water endmember (Solution 1) and evaporated paleo-seawater endmember (Solution 2); Table S2: (ST2). PHREEQC inverse mixing modeling for the salt anticline brine (Solution 3) assumed to be evolved from a mixture of the meteoric water endmember (Solution 1) and evaporated paleo-seawater endmember (Solution 2).


2022 ◽  
Author(s):  
Ji-Hyun Kim ◽  
et al.

Table S1: (ST1). PHREEQC inverse mixing modeling for the Mississippian Leadville Ls brine (Solution 3) assumed to be evolved from a mixture of the meteoric water endmember (Solution 1) and evaporated paleo-seawater endmember (Solution 2); Table S2: (ST2). PHREEQC inverse mixing modeling for the salt anticline brine (Solution 3) assumed to be evolved from a mixture of the meteoric water endmember (Solution 1) and evaporated paleo-seawater endmember (Solution 2).


2021 ◽  
Author(s):  
Lillian R. Lueck ◽  
Mark P. Fischer ◽  
Nicholas J. Williams ◽  
Kerstin Drost ◽  
Justin P. Dodd ◽  
...  

Geology ◽  
2021 ◽  
Author(s):  
Lydia R. Bailey ◽  
Jason Kirk ◽  
Sidney R. Hemming ◽  
Robert W. Krantz ◽  
Peter W. Reiners

Sedimentary rocks of the Paradox Basin of the Colorado Plateau (southwestern USA) record widespread manifestations of paleo–fluid flow and fluid-rock reactions including Cu, U-V, and Fe-Mn mineral deposits, Si and Ca metasomatism, hydrocarbon accumulations, and bleached sandstones. Many of these are spatially associated with faults. Here we show evidence for a widespread phase of fault-related fluid migration and mineralization at 41–48 Ma in the Paradox Basin. We measured K-Ar dates of multiple size fractions of clay-rich fault gouge, yielding statistically overlapping dates of authigenic (1Md) illite for the Salt Valley (47.0 ± 3.0 Ma), Kane Springs (47.7 ± 3.8 Ma), Cliffdweller (43.4 ± 4.6 Ma), Courthouse (41.9 ± 2.3 Ma), Lisbon Valley (45.3 ± 0.9 Ma), and GTO (48.1 ± 2.6 Ma) faults. The latter two have an illite Rb-Sr isochron age of 50.9 ± 3.5 Ma, and fault-adjacent bornite has a Re-Os isochron age of 47.5 ± 1.5 Ma. Authigenic illite from a paleo–oil reservoir near the Courthouse fault formed from the interaction of reduced fluids with oxidized red-bed sandstones at 41.1 ± 2.5 Ma. The Moab and Keystone faults have older authigenic illite ages of 59.1 ± 5.7 Ma and 65.2 ± 1.0 Ma, respectively. Our results show a close temporal relationship between fault gouge formation, red-bed bleaching, and Cu mineralization during an enigmatic time interval, raising questions about drivers of Eocene fluid flow.


2021 ◽  
Author(s):  
Lydia Bailey ◽  
et al.

Methods, notes, and supplemental tables and figures.<br>


2021 ◽  
Author(s):  
Lydia Bailey ◽  
et al.

Methods, notes, and supplemental tables and figures.<br>


2021 ◽  
Author(s):  
Stephanie E. Mills ◽  
Bear Jordan

Utah is the second largest vanadium producing state and the third largest uranium producing state in the United States. Carnotite, a primary ore mineral for both vanadium and uranium, was first discovered and used by Native Americans as a source of pigment in the Colorado Plateau hysiographic province of eastern Utah. Radioactive deposits have been ommercially mined in Utah since about 1900, starting with radium, followed by vanadium, and thenuranium. In 1952, the discovery of the Mi Vida mine in Utah’s Lisbon Valley mining district in San Juan County kicked off a uranium exploration rush across the Colorado Plateau. As a result, the United States dominated the global uranium market from the early 1950s to late 1970s. In the modern mining era, Utah is an important contributor to the domestic uranium and vanadium markets with the only operating conventional uranium-vanadium mill in the country, multiple uranium-vanadium mines on standby, and active uranium-vanadium exploration. Overall, Utah has produced an estimated 122 million lbs U3O8 and 136 million lbs V2O5 since 1904. Most of this production has been from the sandstone-hosted deposits of the Paradox Basin, with minor production from volcanogenic deposits and as byproducts from other operations across the state


Geosphere ◽  
2021 ◽  
Author(s):  
John I. Ejembi ◽  
Sally L. Potter-McIntyre ◽  
Glenn R. Sharman ◽  
Tyson M. Smith ◽  
Joel E. Saylor ◽  
...  

Middle to Upper Jurassic strata in the Paradox Basin and Central Colorado trough (CCT; south­western United States) record a pronounced change in sediment dispersal from dominantly aeolian deposition with an Appalachian source (Entrada Sandstone) to dominantly fluvial deposi­tion with a source in the Mogollon and/or Sevier orogenic highlands (Salt Wash Member of the Morrison Formation). An enigmatic abundance of Cambrian (ca. 527–519 Ma) grains at this prove­nance transition in the CCT at Escalante Canyon, Colorado, was recently suggested to reflect a local sediment source from the Ancestral Front Range, despite previous interpretations that local base­ment uplifts were largely buried by Middle to Late Jurassic time. This study aims to delineate spatial and tem­poral patterns in provenance of these Jurassic sandstones containing Cambrian grains within the Paradox Basin and CCT using sandstone petrog­raphy, detrital zircon U-Pb geochronology, and detrital zircon trace elemental and rare-earth ele­mental (REE) geochemistry. We report 7887 new U-Pb detrital zircon analyses from 31 sandstone samples collected within seven transects in west­ern Colorado and eastern Utah. Three clusters of zircon ages are consistently present (1.53–1.3 Ga, 1.3–0.9 Ga, and 500–300 Ma) that are interpreted to reflect sources associated with the Appalachian orogen in southeastern Laurentia (mid-continent, Grenville, Appalachian, and peri-Gondwanan terranes). Ca. 540–500 Ma zircon grains are anom­alously abundant locally in the uppermost Entrada Sandstone and Wanakah Formation but are either lacking or present in small fractions in the overlying Salt Wash and Tidwell Members of the Morrison Formation. A comparison of zircon REE geochem­istry between Cambrian detrital zircon and igneous zircon from potential sources shows that these 540–500 Ma detrital zircon are primarily magmatic. Although variability in both detrital and igneous REE concentrations precludes definitive identifica­tion of provenance, several considerations suggest that distal sources from the Cambrian granitic and rhyolitic provinces of the Southern Oklahoma aulacogen is also likely, in addition to a proximal source identified in the McClure Mountain syenite of the Wet Mountains, Colorado. The abundance of Cambrian grains in samples from the central CCT, particularly in the Entrada Sandstone and Wana­kah Formation, suggests northwesterly sediment transport within the CCT, with sediment sourced from Ancestral Rocky Mountains uplifts of the southern Wet Mountains and/or Amarillo-Wichita Mountains in southwestern Oklahoma. The lack of Cambrian grains within the Paradox Basin sug­gests that the Uncompahgre uplift (southwestern Colorado) acted as a barrier to sediment transport from the CCT.


2021 ◽  
Author(s):  
J.I. Ejembi ◽  
et al.

<div>Table S1: Peak analyses of age clusters. Figure S1: Chondrite-normalized REE patterns in detrital zircon. Figure S2: LREE-HREE ratio plots. File S1: Detrital zircon U-Pb age data (this study and from Potter-McIntyre et al., 2016). File S2: U-Pb age peaks analysis. File S3: End Member analysis. File S4: Rare earth elemental geochemistry analysis in detrital zircon. File S5: Rare earth elemental geochemistry analysis in igneous zircon.<br></div>


2021 ◽  
Author(s):  
J.I. Ejembi ◽  
et al.

<div>Table S1: Peak analyses of age clusters. Figure S1: Chondrite-normalized REE patterns in detrital zircon. Figure S2: LREE-HREE ratio plots. File S1: Detrital zircon U-Pb age data (this study and from Potter-McIntyre et al., 2016). File S2: U-Pb age peaks analysis. File S3: End Member analysis. File S4: Rare earth elemental geochemistry analysis in detrital zircon. File S5: Rare earth elemental geochemistry analysis in igneous zircon.<br></div>


Sign in / Sign up

Export Citation Format

Share Document