Regional Implications of an Extensive Linear Sediment-Dispersal System Along Western Margin of Cretaceous Interior Seaway: Second Wall Creek Sand, Powder River Basin, Wyoming: ABSTRACT

AAPG Bulletin ◽  
1988 ◽  
Vol 72 ◽  
Author(s):  
Carl F. Vondra, Nazrul I. Khandaker
2019 ◽  
Vol 56 (3) ◽  
pp. 295-317
Author(s):  
Joseph Syzdek ◽  
David Malone ◽  
John Craddock

This study uses detrital zircon U-Pb geochronology to investigate the provenance of the Jurassic Sundance Formation in the western Powder River Basin, Wyoming. Understanding the provenance of the Sundance Formation is critical as it was deposited during the transition from cratonic to synorogenic sedimentation derived from the Sevier-Laramide foreland. The Sundance in the western Powder River Basin consists of an oolitic limestone and green glauconitic sandstone at the base, green shales in the middle, and a yellow quartz arenite with coquina “oyster” beds at the top. U-Pb analyses of detrital zircons using LA-ICP-MS were conducted on two samples collected in the Bud Love Wildlife Habitat Management Area, 20 km northwest of Buffalo, WY. The two samples were taken from the upper and lower sandstone members of the Sundance Formation (n=289 concordant U-Pb zircon ages). The samples show a distinct difference in detrital zircon age spectra. The lower sandstone age spectrum ranges from 260-3172 Ma with 23% of the ages being Paleozoic, 71% being Proterozoic, and 6% being Archean. This lower stratum has detrital zircon age peaks at 343, 432, 686, 1039, 1431, 1662, 1748, 1941, 2433, and 3179 Ma. The lower sandstone shows an easterly Appalachian-Ouachita provenance, which persisted in the region beginning in the Carboniferous. In comparison to the upper strata, ages range from 157-2949 Ma and age peaks at 170, 243, 440, 545, 1082, 1467, 1681, and 1985 Ma. The maximum deposition age for the upper member is 160 Ma. Mesozoic aged grains make up 15.6% of the zircons, 14.7% were Paleozoic, 65.7% were Proterozoic, and 4% were Archean in age. The appearance of Mesozoic zircons in the upper sandstone marks the first significant appearance of westerly sourced zircons, and perhaps reflects the earliest uplift of the Sevier fold and thrust belt. Previous research has found this same signature in the Sundance but not in the underlying Triassic Chugwater Formation, resulting in a broad boundary of the change in sediment dispersal and the onset of the Sevier Orogeny between the Triassic and Jurassic. This study was conducted for a higher resolution to the provenance of the Sundance Formation and to further narrow the boundary of differing sedimentation from an eastern recycled to western synorogenic source.


2017 ◽  
Vol 1 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Kathryn Bills Walsh

This case presents the stakeholder conflicts that emerge during the development and subsequent reclamation of abandoned natural gas wells in Wyoming where split estate, or the separation of surface land and mineral rights from one another, occurs. From 1998 to 2008, the Powder River Basin of northeastern Wyoming experienced an energy boom as a result of technological innovation that enabled the extraction of coalbed methane (CBM). The boom resulted in over 16,000 wells being drilled in this 20,000 square-mile region in a single decade. As of May 2017, 4,149 natural gas wells now sit orphaned in Wyoming as a result of industry bankruptcy and abandonment. The current orphaned wells crisis was partially enabled by the patchwork of surface and mineral ownership in Wyoming that is a result of a legal condition referred to as split estate. As the CBM boom unfolded in this landscape and then began to wane, challenges emerged most notably surrounding stalled reclamation activities. This case illuminates these challenges highlighting two instances when split estate contributed to issues between landowners and industry operators which escalated to litigation.


Sign in / Sign up

Export Citation Format

Share Document