total thickness
Recently Published Documents


TOTAL DOCUMENTS

309
(FIVE YEARS 77)

H-INDEX

19
(FIVE YEARS 3)

Author(s):  
А.В. Бабичев ◽  
Е.С. Колодезный ◽  
А.Г. Гладышев ◽  
Д.В. Денисов ◽  
A. Jollivet ◽  
...  

The design of the heterostructure of a 2.5 THz range quantum-cascade detector is proposed and heterostructure is grown by molecular-beam epitaxy technique. To optimize the thicknesses of the layers of the heterostructure cascades, a numerical method for iterative solution of the Schrodinger ¨ −Poisson equation in the k · p formalism was used. The grown heterostructure of the quantum-cascade detector showed a high structural perfection, confirmed by the small values of the average FWHM of the high-order satellite peaks on the X-ray diffraction rocking curves, which were (8.3 ± 0.5)′′. Analysis of dark-field images obtained by transmission electron microscopy showed that the total thickness of the layers in the cascade is (137.3 ± 6.9) nm, which corresponds to the calculated thickness of the layers in the cascade of the heterostructure of the quantum-cascade detector.


2021 ◽  
Author(s):  
Takao Katsura

New, low-cost transparent vacuum insulation panels (TVIPs) using structured cores for the windows of existing buildings are proposed. The TVIP is produced by inserting the structured core, the low-emissivity film, and the adsorbent into the transparent gas barrier envelopes. In this chapter, the authors introduce the outlines, the design and thermal analysis method, the performance evaluation (test) method. Firstly, five spacers, namely peek, modified peek, mesh, silica aerogel, and frame, are selected as the structured core. The effective thermal conductivity of TVIPs with five different spacers is evaluated at different pressure levels by applying numerical calculation. The result indicated that TVIPs with frame and mesh spacers accomplish better insulation performance, with a center-of-panel apparent thermal conductivity of 7.0 × 10−3 W/m K at a pressure of 1 Pa. The apparent thermal conductivity is the same as the value obtained by the simultaneous evacuation thermal conductivity measurement applying the heat flux meter method. Furthermore, using a frame-type TVIP with a total thickness of 3 mm attached to an existing window as a curtain decreases the space heat loss by approximately 69.5%, whereas the light transparency decreases to 75%.


Author(s):  
Hend Elzefzafy

The advantages of fiber-reinforced polymer (FRP) composite material have attracted architectural engineers as alternative construction materials. FRP materials are noncorrosive, lightweight, exhibit high tensile strength, and stiffness, are easily fabricated and constructed. For architectural applications, FRP materials are fabricated using a polymer matrix, such as epoxy, vinyl ester, or polyester, and reinforced with various grades of carbon, glass, and/or aramid fibers. In this study, FRP coupons have been tested under axial tensile load to evaluate the strength of these materials for architectural application. Coupon specimens were cut from two different types of glass-FRP (GFRP) tubes namely: Type I and II, the two types had constant internal diameter equal to 152 mm. The GFRP tubes Type I consist of six layers with (±60°) fibers angles oriented mainly in the hoop direction with respect to the longitudinal axis of the tubes, the total thickness is 2.65 mm. While GFRP tubes I consist of fourteen layers with different fibers angles (±65, ±45, ±65) and the total thickness are 6.4 mm. The test results were presented and discussed. The strength of the coupon showed an acceptable level to be used for architectural application. Some of the FRP composites successful applications are briefly presented and discussed to provide the appropriate background for the application of FRP composites in architectural engineering. The promising results presented for the GFRP materials represent a further step toward architectural application.


2021 ◽  
Vol 2064 (1) ◽  
pp. 012063
Author(s):  
A B Markov ◽  
E V Yakovlev ◽  
A V Solovyov ◽  
E A Pesterev ◽  
V I Petrov ◽  
...  

Abstract The paper investigates the regularities of the formation of Cr-Zr surface alloy using a low-energy high-current electron beam (LEHCEB). The influence of the electron-beam processing parameters and the magnetron deposition parameters on the elemental composition of the formed Cr-Zr surface alloy is estimated. It is shown that, for all considered modes, there is a general tendency to a decrease in the chromium content in the surface alloy with an increase in the energy density or the LEHCEB processing pulse number. The thickness increasement of the chromium film applied in one cycle or the surface alloy total thickness increasement leads to an increase in the chromium content in the surface alloy. The LEHCEB processing parameters, namely the energy density and the number of pulses, have a greater effect on the chromium content during the formation of the Cr-Zr surface alloy in comparison to the magnetron sputtering parameters, namely the deposited film thickness and the formed surface alloy thickness. A linear regression model that describes the chromium content in the surface alloy depending on the film thickness, the surface alloy total thickness, the number of pulses and the pulse energy density is proposed.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Fabrizio Antonio Viola ◽  
Jonathan Barsotti ◽  
Filippo Melloni ◽  
Guglielmo Lanzani ◽  
Yun-Hi Kim ◽  
...  

AbstractRecent advancements in the field of electronics have paved the way to the development of new applications, such as tattoo electronics, where the employment of ultraconformable devices is required, typically achievable with a significant reduction in their total thickness. Organic materials can be considered enablers, owing to the possibility of depositing films with thicknesses at the nanometric scale, even from solution. However, available processes do not allow obtaining devices with thicknesses below hundreds of nanometres, thus setting a limit. Here, we show an all-organic field effect transistor that is less than 150 nm thick and that is fabricated through a fully solution-based approach. Such unprecedented thickness permits the device to conformally adhere onto nonplanar surfaces, such as human skin, and to be bent to a radius lower than 1 μm, thereby overcoming another limitation for field-effect transistors and representing a fundamental advancement in the field of ultrathin and tattoo electronics.


Author(s):  
Reem Mohammed S. Abahussain ◽  
Atheer Abdullah Al Jubeiri ◽  
Asma Saleh S. Alruwaili ◽  
Faisal Saeed A. Al-Ghamdi ◽  
Muath Sulaiman G. Alhamdi ◽  
...  

Thermite is a metal powder and metal oxide mixture that is pyrotechnic. Thermite conducts an exothermic decrease oxidation process (redox) when inflamed by the heat or chemical reaction. Burning thermite or magnesium produces predominantly thermal injury that may be considered identical to deep partial- or full-thickness thermal burns. While exposure to incendiary metals can occur in many settings, serious burns are most likely to result from industrial or military incidents. The main cause of thermal damage in combustion thermite or magnesium is the identical to the profound burning thermal burning of partial or total thickness. Thermite incendiaries can create several tiny, deep, dispersed molten iron burns. Local anesthetic may make this feasible. Outcomes and complications of incendiary metal burns are similar to other thermal injuries. In this paper we overview magnesium and thermite poisoning dermatologically and their management.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1857
Author(s):  
Yuji Noguchi ◽  
Hiroki Matsuo

Superlattice-structured epitaxial thin films composed of Mn(5%)-doped BiFeO3 and BaTiO3 with a total thickness of 600 perovskite (ABO3) unit cells were grown on single-crystal SrTiO3 substrates by pulsed laser deposition, and their polarization and dielectric properties were investigated. When the layers of Mn-BiFeO3 and BaTiO3 have over 25 ABO3 unit cells (N), the superlattice can be regarded as a simple series connection of their individual capacitors. The superlattices with an N of 5 or less behave as a unified ferroelectric, where the BaTiO3 and Mn-BiFeO3 layers are structurally and electronically coupled. Density functional theory calculations can explain the behavior of spontaneous polarization for the superlattices in this thin regime. We propose that a superlattice formation comprising two types of perovskite layers with different crystal symmetries opens a path to novel ferroelectrics that cannot be obtained in a solid solution system.


2021 ◽  
pp. M57-2021-15
Author(s):  
E. V. Deev ◽  
G. G. Shemin ◽  
V. A. Vernikovsky ◽  
O. I. Bostrikov ◽  
P. A. Glazyrin ◽  
...  

AbstractThe Yenisei-Khatanga Composite Tectono-Sedimentary Element (YKh CTSE) is located between the Siberian Craton and the Taimyr-Severnaya Zemlya fold-and-thrust belt. The total thickness of the Mesoproterozoic-Cenozoic sediments of YKh CTSE reaches 20 to 25 km. They are divided into four tectono-sedimentary elements (TSE): (i) Mesoproterozoic-early Carboniferous Siberian Craton continental margin, (ii) middle Carboniferous-Middle Triassic syn-orogenic Taimyr foreland basin, (iii) late Permian-Early Triassic syn-rift, and (iv) Triassic-Early Paleocene post-rift. The last one is the most important in terms of its petroleum potential and is the most drilled part of the CTSE. Its thickness accounts for half of the total thickness of YKh CTSE. The margins of the post-rift TSE and the inner system of inversion swells and adjacent troughs and depressions were shaped by three tectonic events: (i) middle Carboniferous-Middle Triassic Taimyr orogeny, (ii) Late Jurassic-Early Cretaceous Verkhoyansk orogeny, (iii) Late Cenozoic uplift. These processes led to more intense migration of hydrocarbons, the trap formation and their infill with hydrocarbons. Triassic, Jurassic, and Lower Cretaceous source rocks are mostly gas-prone, and among 20 discovered fields in Jurassic and Cretaceous plays, 17 are gas or mixed-type fields.


2021 ◽  
pp. 127-134
Author(s):  
Tamara BORYSENKO

The paper is devoted to lithostratigraphic and biostratigraphic subdivision of the Silurian deposits of 358 m total thickness in the 25-Kotyuzhiny structural well and its comparison with the stratotypic Dniester section of the Silurian system in accordance with Legend to the geological map of Ukraine, the Volyn-Podolsky series of 1: 200 000 scale, consistent with the latest modernization of Silurian stratigraphic charts.   The described section is a parastratotype for Silurian litho-stratons of the Kovel-Khotyn structural and facies zone and a reference one for Silurian deposits in the central part of this zone.   The Silurian in the 25-Kotyuzhiny well is represented by the lower (Llandoverian and Wenlockian stages) and upper (Ludlovian and Przhidolian stages) series. According to the lithological-facies composition and sedimetantaion conditions during Silurian times, there are 3 major completed stages of sedimentation as transgressive-regressive cycles, corresponding to the the Yarugian, Malinovetsian and Rukshinian series, which are quite clearly subdivided into 10 suites and 12 sub-suites.   In correlation with the Dniester reference section, litho-stratons of the Silurian are characterized mainly by carbonate and clay-carbonate composition, relative stable thickness and facies pattren, diversity of fauna with a predominance of shallow benthic forms.   The well is characterized by bituninous manifestations indicating hydrocarbon potential of the area and its prospectivity for shale gas accumualtions in the formations of the upper Silurian in particular. 


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 655
Author(s):  
Mohammad Javad Mirshojaeian Hosseini ◽  
Robert A. Nawrocki

Flexible electronics enable various technologies to be integrated into daily life and fuel the quests to develop revolutionary applications, such as artificial skins, intelligent textiles, e-skin patches, and on-skin displays. Mechanical characteristics, including the total thickness and the bending radius, are of paramount importance for physically flexible electronics. However, the limitation regarding semiconductor fabrication challenges the mechanical flexibility of thin-film electronics. Thin-Film Transistors (TFTs) are a key component in thin-film electronics that restrict the flexibility of thin-film systems. Here, we provide a brief overview of the trends of the last three decades in the physical flexibility of various semiconducting technologies, including amorphous-silicon, polycrystalline silicon, oxides, carbon nanotubes, and organics. The study demonstrates the trends of the mechanical properties, including the total thickness and the bending radius, and provides a vision for the future of flexible TFTs.


Sign in / Sign up

Export Citation Format

Share Document