scholarly journals Stair Locomotion Method of Quadruped Robot Using Genetic Algorithm

Author(s):  
Jae-Oh Byun ◽  
Yoon-Ho Choi
2013 ◽  
Vol 01 (01) ◽  
pp. 41-60 ◽  
Author(s):  
Adam Harmat ◽  
Michael Trentini ◽  
Inna Sharf

In this paper, we describe a new jumping behaviour developed for the quadruped robot, PAW (Platform for Ambulating Wheels). The robot has very few degrees of freedom and no knee joints. It employs springy legs and wheels at the distal ends of the legs to achieve various modes of legged, wheeled, and hybrid locomotion, such as high-speed breaking, bounding, and presently jumping. The jumping maneuver developed in this manuscript is designed specifically to take advantage of the wheels on the robot and compliance in its legs and it involves the following principal stages: acceleration to jumping speed, body positioning via front hip thrusting, rear leg compression and thrusting, and flight. A high-fidelity MSC.ADAMS/Simulink co-simulation was developed and used to test and optimize the jumping process. Because of the strong coupling between the parameters defining the jump maneuver, manual parameter tuning is difficult and thus a genetic algorithm is employed for the optimization process. The data generated by the genetic algorithm is further used for the fitting of a quadratic response surface, which allows identifying those parameters that contribute most to a successful jump. Finally, the jumping maneuver is implemented on the physical PAW to demonstrate its feasibility on a hybrid quadruped, and to provide insights into the robot response during this highly dynamic maneuver.


2012 ◽  
Vol 12 (3) ◽  
pp. 66-75 ◽  
Author(s):  
Haocheng Shen ◽  
Jason Yosinski ◽  
Petar Kormushev ◽  
Darwin G. Caldwell ◽  
Hod Lipson

Abstract Legged robots are uniquely privileged over their wheeled counterparts in their potential to access rugged terrain. However, designing walking gaits by hand for legged robots is a difficult and time-consuming process, so we seek algorithms for learning such gaits to automatically using real world experimentation. Numerous previous studies have examined a variety of algorithms for learning gaits, using an assortment of different robots. It is often difficult to compare the algorithmic results from one study to the next, because the conditions and robots used vary. With this in mind, we have used an open-source, 3D printed quadruped robot called QuadraTot, so the results may be verified, and hopefully improved upon, by any group so desiring. Because many robots do not have accurate simulators, we test gait-learning algorithms entirely on the physical robot. Previous studies using the QuadraTot have compared parameterized splines, the HyperNEAT generative encoding and genetic algorithm. Among these, the research on the genetic algorithm was conducted by (G l e t t e et al., 2012) in a simulator and tested on a real robot. Here we compare these results to an algorithm called Policy learning by Weighting Exploration with the Returns, or RL PoWER. We report that this algorithm has learned the fastest gait through only physical experiments yet reported in the literature, 16.3% faster than reported for HyperNEAT. In addition, the learned gaits are less taxing on the robot and more repeatable than previous record-breaking gaits.


Author(s):  
Francisco A. Chávez-Estrada ◽  
Jacobo Sandoval-Gutierrez ◽  
Juan C. Herrera-Lozada ◽  
Mauricio Olguín-Carbajal ◽  
Daniel L. Martínez-Vázquez ◽  
...  

This paper presents a novel micro-segmented genetic algorithm (μsGA) to identify the best solution for the locomotion of a quadruped robot designed on a rectangular ABS plastic platform. We compare our algorithm with three similar algorithms found in the specialized literature: a standard genetic algorithm (GA), a micro-genetic algorithm (μGA), and a micro artificial immune system (μAIS). The quadruped robot prototype guarantees the same conditions for each test. The platform was developed using 3D printing for the structure and can accommodate the mechanisms, sensors, servomechanisms as actuators. It also has an internal battery and a multicore embedded system (mES) to process and control the robot locomotion. This research proposes a μsGA that segments the individual into specific bytes. μGA techniques are applied to each segment to reduce the processing time; the same benefits as the GA are obtained, while the use of a computer and the high computational resources characteristic of the GA are avoided. This is the reason why some research in robot locomotion is limited to simulation. The results show that the performance of μsGA is better than the three other algorithms (GA, μGA and AIS). The processing time was reduced using a mES architecture that enables parallel processing, meaning that the requirements for resources and memory were reduced. This research solves the problem of continuous locomotion of a quadruped robot, and gives a feasible solution with real performance parameters using a μsGA bio-micro algorithm and a mES architecture.


Mechanika ◽  
2018 ◽  
Vol 23 (6) ◽  
Author(s):  
Yongnian ZHANG ◽  
Xinsheng WANG ◽  
Yuhong XIN ◽  
Yang WU ◽  
Min KANG ◽  
...  

2006 ◽  
Vol 2006 (0) ◽  
pp. _2P1-B08_1-_2P1-B08_4
Author(s):  
Feng DUAN ◽  
Yoshiaki JITSUKAWA ◽  
Ryuichi UEDA ◽  
Tamio ARAI

Sign in / Sign up

Export Citation Format

Share Document