scholarly journals AEROTAXI ground static test and finite element model validation

2011 ◽  
Vol 3 (2) ◽  
pp. 57-64
Author(s):  
LOZICI-BRÎNZEI Dorin ◽  
◽  
TǍTARU Simion ◽  
BÎSCĂ Radu
2021 ◽  
pp. 136943322110073
Author(s):  
Yu Cheng ◽  
Yuanlong Yang ◽  
Binyang Li ◽  
Jiepeng Liu

To investigate the seismic behavior of joint between special-shaped concrete-filled steel tubular (CFST) column and H-section steel beam, a pseudo-static test was carried out on five specimens with scale ratio of 1:2. The investigated factors include stiffening types of steel tube (multi-cell and tensile bar) and connection types (exterior diaphragm and vertical rib). The failure modes, hysteresis curves, skeleton curves, stress distribution, and joint shear deformation of specimens were analyzed to investigate the seismic behaviors of joints. The test results showed the connections of exterior diaphragm and vertical rib have good seismic behavior and can be identified as rigid joint in the frames with bracing system according to Eurocode 3. The joint of special-shaped column with tensile bars have better seismic performance by using through vertical rib connection. Furthermore, a finite element model was established and a parametric analysis with the finite element model was conducted to investigate the influences of following parameters on the joint stiffness: width-to-thickness ratio of column steel tube, beam-to-column linear stiffness ratio, vertical rib dimensions, and axial load ratio of column. Lastly, preliminary design suggestions were proposed.


Author(s):  
Massimiliano Gobbi ◽  
Giorgio Previati ◽  
Giampiero Mastinu

An off-road motorcycle frame has been analyzed and modified to optimize its fatigue life. The fatigue life of the frame is very important to define the service life of the motorcycle. The strain levels on key parts of the frame were collected during experimental tests. It has been possible to locate the areas where the maximum stress level is reached. A finite element (FE) model of the frame has been developed and used for estimating its fatigue life. Static test bench results have been used to validate the FE model. The accuracy of the finite element model is good, the errors are always below 5% with respect to measured data. The mission profile of the motorcycle is dominated by off-road use, with stress levels close to yield point, so a strain-life approach has been applied for estimating the fatigue life of the frame. Particular attention has been paid to the analysis of the welded connections. A shell and a 3D FE model have been combined to simulate the stress histories at the welds. Two reference maneuvers have been considered as loading conditions. The computed stresses have been used to assess the life of the frame according to the notch stress approach (Radaj & Seeger). The method correlates the stress range in a idealized notch, characterized by a fictitious radius in the weld toe or root, to the fatigue life by using a single S-N curve. New technical frame layouts have been proposed and verified by means of the developed finite element model. The considered approach allows to speed up the design process and to reduce the testing phase.


2011 ◽  
Vol 383-390 ◽  
pp. 6641-6645
Author(s):  
Ming Bo Ding ◽  
Xing Chong Chen

This paper mostly studied on the pile stress in the loess foundation when the pile and the soil are interacting by pseudo-static test of piers and piles in the remolded loess foundation indoor. We get the stress-depth curve of pile body. We get its finite element model by ANASYS and analyze the change of pile body stress.


Sign in / Sign up

Export Citation Format

Share Document