Development of a Third-Generation Superhomogénéisation Method for the Homogenization of a Pressurized Water Reactor Assembly

1993 ◽  
Vol 115 (2) ◽  
pp. 129-141 ◽  
Author(s):  
A. Hébert ◽  
G. Mathonnière
Author(s):  
Xuming Wang ◽  
Cenxi Yuan ◽  
Chen Ye

Taishan European Pressurized Water Reactor (EPR) is a third generation advanced pressurized water reactor (PWR), which adopts the third generation advanced fuel assembly (AFA-3G-LE) from AREVA for the first time. As suggested by American Electric Power Research Institute (EPRI), an EPRI level III crud risk assessment is necessary for new type of plants. Because crud induced power offset (CIPS) and crud induced local corrosion (CILC) can lead to axial offset anomaly (AOA) and fuel cladding failure, respectively. A EPRI level III CIPS/CILC risk assessment for Taishan EPR is performed with a new framework of simulation by using sub-channel code FLICA, crud code BOA, and Monte Carlo transport code Tripoli-4. Such framework enables a self-consistent calculation, including a detailed description on neutronics contributed by boron. The validation of present work is confirmed because of the good agreement with the experienced data of EPRI. The results show that AFA-3G-LE has a good performance on crud risk assessment. Even in the worst case, the boron-10 deposition (2.6 g) and the maximum thickness of crud (59 μm) are lower than the low risk threshold, 31.33 g and 75 μm, respectively. Hence, It is expected that Taishan EPR has a very low risk on CIPS and CILC.


2021 ◽  
Author(s):  
Weibin Zhang ◽  
Chenglin Zhu ◽  
Qiao Zhang ◽  
Linlin Xu ◽  
Guoping Quan

According to the historical experience of international nuclear power software development and the requirements of relevant guidelines at home and abroad, a large number of experiments and theoretical work must be carried out to verify and confirm the empirical formulas, models and calculation methods used in the software and evaluate the models related to safety evaluation in order to make the software be applied to the design and analysis of nuclear power plants. Validation and evaluation is the most important key link in the process of nuclear power software development, which is heavy workload and difficult, and needs a lot of actual power plant operation data. This paper proposed a research on the validation and evaluation of the COSINE software package’s calculation capability and accuracy based on the operation data of the third generation passive PWR (Pressurized Water Reactor) AP1000. The comparison results between the operation limit parameters of the nuclear power plant including critical boron concentration, heat pipe factor of nuclear enthalpy rise, heat flux hot spot factor and AO (Axial Offset) showed that the data calculated by COSINE met the running requirements of the nuclear power plant, and the calculation accuracy keeps also in a good way.


2019 ◽  
pp. 46-53 ◽  
Author(s):  
Hend M. Saad ◽  
Riham Refeat ◽  
Moustafa Aziz ◽  
H. Mansour

The radial and axial power distribution in power reactors are determined mainly by the patterns of the fuel assembly and the burnable absorber at the beginning of cycle. In Advanced Pressurized Water Reactor (APWR), gadolinium burnable absorber is used to decrease the relative power of fresh fuel assemblies. In this paper, the effect of the axial distribution of gadolinium (Gd) on the power of the APWR assembly is studied. Three models of APWR assemblies are simulated using MCNP6 code. In the first model, UO2 fuel is distributed uniformly in all the fuel rods. In the other two models some of the UO2 fuel rods are replaced by UO2-Gd2O3 rods in part length distribution. Two gadolinium concentrations 6% and 10% are used. The main neutronic parameters are estimated for the three models: the multiplication factor (K-infinity) as a function of burnup (GWd/MTU), the radial and axial power distributions. The results show that the distribution of the gadolinium absorber in the central region of fuel rod (part-length absorber) leads to flattening of axial power, which means additional axial power distribution control.


Sign in / Sign up

Export Citation Format

Share Document