Empirical Steam Generator Water-Level Modeling Using Neural Networks

1999 ◽  
Vol 127 (1) ◽  
pp. 102-112 ◽  
Author(s):  
Chaung Lin ◽  
Tsung-Ming Lin
2003 ◽  
Vol 13 (3) ◽  
pp. 322-327
Author(s):  
Hyeon-Bae Bae ◽  
Young-Kwang Woo ◽  
Sung-Shin Kim ◽  
Kee-Soo Jung

1964 ◽  
Author(s):  
A. N. Nahavandi ◽  
A. Batenburg

2020 ◽  
Author(s):  
Ehsan Foroumandi ◽  
Vahid Nourani ◽  
Elnaz Sharghi

Abstract Lake Urmia, as the largest lake in Iran, has suffered from water-level decline and this problem needs to be investigated accurately. The major reason for the decline is controversial. The current paper aimed to study the hydro-environmental variables over the Lake Urmia basin using remote sensing tools, artificial neural networks, wavelet transforms, and Mann–Kendall trend tests from 1995 to 2019 in order to determine the primary reason of the decline and to find the most important hydrologic periodicities over the basin. The results indicated that for the monthly-, seasonally-, and annually-based time series, the components with 4-month and 16-month, 24- and 48-month, and 2- and 4-year, respectively, are the most dominant periodicities over the basin. The agricultural increase according to the vegetation index and evapotranspiration and their close relationship with the water-level change indicated that human land-use is the main reason for the decline. The increasing agriculture, in the situations that the precipitation has not increased, caused the inflow runoff to the lake to decline and the remaining smaller discharge is not sufficient to stabilize the water level. Temperature time series, also, has experienced a significant positive trend which intensified the water-level change.


2021 ◽  
Author(s):  
Yonglu Du ◽  
Haotian Li ◽  
Minrui Fei ◽  
Ling Wang ◽  
Pinggai Zhang ◽  
...  

2022 ◽  
pp. 1118-1129
Author(s):  
Nawaf N. Hamadneh

In this study, the performance of adaptive multilayer perceptron neural network (MLPNN) for predicting the Dead Sea water level is discussed. Firefly Algorithm (FFA), as an optimization algorithm is used for training the neural networks. To propose the MLPNN-FFA model, Dead Sea water levels over the period 1810–2005 are applied to train MLPNN. Statistical tests evaluate the accuracy of the hybrid MLPNN-FFA model. The predicted values of the proposed model were compared with the results obtained by another method. The results reveal that the artificial neural network (ANN) models exhibit high accuracy and reliability for the prediction of the Dead Sea water levels. The results also reveal that the Dead Sea water level would be around -450 until 2050.


Sign in / Sign up

Export Citation Format

Share Document