Nuclear Power Plant Parameter Prediction Strategy for Human Error Detection

2019 ◽  
Author(s):  
J. Bae ◽  
S. Lee
Author(s):  
Shen Yang ◽  
Geng Bo ◽  
Li Dan

According to the research of nuclear power plant human error management, it is found that the traditional human error management are mainly based on the result of human behavior, the event as the point cut of management, there are some drawbacks. In this paper, based on the concept of the human performance management, establish the defensive human error management model, the innovation point is human behavior as the point cut, to reduce the human errors and accomplish a nip in the bud. Based on the model, on the one hand, combined with observation and coach card, to strengthen the human behavior standards expected while acquiring structured behavior data from the nuclear power plant production process; on the other hand, combined with root cause analysis method, obtained structured behavior data from the human factor event, thus forming a human behavior database that show the human performance state picture. According to the data of human behavior, by taking quantitative trending analysis method, the P control chart of observation item and the C control chart of human factor event is set up by Shewhart control chart, to achieve real-time monitoring of the process and result of behavior. At the same time, development Key Performance Indicators timely detection of the worsening trend of human behavior and organizational management. For the human behavior deviation and management issues, carry out the root cause analysis, to take appropriate corrective action or management improvement measures, so as to realize the defense of human error, reduce human factor event probability and improve the performance level of nuclear power plant.


Author(s):  
Ronald Boring ◽  
Thomas Ulrich ◽  
Roger Lew ◽  
Martin Rasmussen Skogstad

The authors have recently developed a microworld, a simplified process control simulator, to simulate a nuclear power plant. The microworld provides an environment that can be readily manipulated to gather data using a range of participants, from students to fully qualified operators. Because the microworld represents a simplified domain, it is possible to have more precise experimental control compared with the complex and confounding environment afforded by a full-scope simulator. In this paper, we discuss collecting human reliability data from a microworld. We review the generalizability of human error data from the microworld compared to other data sources like full-scope simulator studies and compare advantages and disadvantages of microworld simulator studies to support human reliability data collection needs.


Author(s):  
Kenji Mashio ◽  
Kodo Ito

Integrated process of human error management in human factors engineering (HFE) process provides a systematic direction for the design countermeasures development to prevent potential human errors. The process analyzes performance influence factors (PIFs) for crew failure modes (CFMs) and human failure events (HFEvs) in human reliability analysis (HRA). This paper provides applications of the process to the event evaluation for nuclear power plant design, especially PWR. In this application, the HRA/HFE integrated process had specified further detail for PIF attributes which had not been obtained in HRA, and showed further investigations to treat how operators induced their human errors through their cognitive task process in their work environment. This application showed effectiveness of the process in order to provide design countermeasures for preventing potential human errors occurrence based on the extensive PIFs and their error forcing context in HRA.


Author(s):  
F. J. Moody

Even in the absence of depraved terrorist threats, nuclear plants have been designed to respond safely to postulated accidents. Redundant safety features are built into plants to trigger safe shutdown and containment of possible accidents. The defined accidents range from minor leakage and operator errors to a complete loss of coolant from the reactor. Post-accident scenarios are postulated by experts in reactor and containment thermal-hydraulics, and all other sciences embraced by nuclear power plant design. The probability of failure is determined for all engineered safety systems. Then analytical and experimental programs are employed to predict the long term post-accident thermal-hydraulic state of a plant and its effect on the environment. The postulated accidents and safety system responses include effects resulting from mechanical damage and component malfunctions, such as pipe ruptures and the failure of pumps and valves. The initiating causes can be material failure, human error, and environmental effects from earthquakes, floods, and other severe acts of nature. It is prudent to build on an already established safety and accident technology to include the effects of external, planned attacks on a nuclear plant. This process includes “matching wits” with the minds of those who plot evil, and reinforcing protective security barriers where potential vulnerabilities are detected. Hard questions to ask and answer are, “What are the greatest potential security threats to a nuclear power plant? What possible human activity could make them happen? How can they be prevented?” Reactor and containment thermal-hydraulics contributes significantly to answering these questions.


Sign in / Sign up

Export Citation Format

Share Document