Interplay of synthesis and mechanism in asymmetric homogeneous catalysis

2001 ◽  
Vol 73 (2) ◽  
pp. 343-346 ◽  
Author(s):  
Nicholas J. Adams ◽  
Joachim Bargon ◽  
John M. Brown ◽  
Edward J. Farrington ◽  
Erwan Galardon ◽  
...  

Asymmetric homogeneous catalysis forms one of the main planks of modern organic synthesis. It has developed rapidly and largely through the application of novel ligands, whose design is very much based on insight and intuition. At the same time, a better understanding of catalytic reaction mechanisms can contribute to further progress, since it can identify the intimate relationship between ligand structure and successful applications. The presentation will concentrate on the author's research with complexes of the late transition metals and include the search for superior methodologies in hydroboration, as well as ventures into the chemistry of reactive intermediates. The latter will be exemplified from work with rhodium and palladium catalysts.

2021 ◽  
Author(s):  
Sujoy Rana ◽  
Jyoti Prasad Biswas ◽  
Sabarni Paul ◽  
Aniruddha Paik ◽  
Debabrata Maiti

The promising aspects of iron in synthetic chemistry are being explored for three-four decades as a green and eco-friendly alternative to late transition metals. This present review unveils these rich iron-chemistry towards different transformations.


Author(s):  
Pramod Kumar ◽  
Animesh Das ◽  
Biplab Maji

The phosphorous-containing porous organic polymer is a trending material for the synthesis of heterogeneous catalysts. Decades of investigations have established phosphines as versatile ligands in homogeneous catalysis. Recently, phosphine-based heterogeneous...


2018 ◽  
Vol 14 ◽  
pp. 2553-2567 ◽  
Author(s):  
Keishiro Tahara ◽  
Ling Pan ◽  
Toshikazu Ono ◽  
Yoshio Hisaeda

Cobalamins (B12) play various important roles in vivo. Most B12-dependent enzymes are divided into three main subfamilies: adenosylcobalamin-dependent isomerases, methylcobalamin-dependent methyltransferases, and dehalogenases. Mimicking these B12 enzyme functions under non-enzymatic conditions offers good understanding of their elaborate reaction mechanisms. Furthermore, bio-inspiration offers a new approach to catalytic design for green and eco-friendly molecular transformations. As part of a study based on vitamin B12 derivatives including heptamethyl cobyrinate perchlorate, we describe biomimetic and bioinspired catalytic reactions with B12 enzyme functions. The reactions are classified according to the corresponding three B12 enzyme subfamilies, with a focus on our recent development on electrochemical and photochemical catalytic systems. Other important reactions are also described, with a focus on radical-involved reactions in terms of organic synthesis.


1998 ◽  
Vol 70 (5) ◽  
pp. 1041-1046 ◽  
Author(s):  
W. A. Nugent ◽  
G. Licini ◽  
Marcella Bonchio ◽  
Olga Bortolini ◽  
M. G. Finn ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document