The role of STAT3 in liver regeneration

2005 ◽  
Vol 41 (7) ◽  
pp. 461 ◽  
Author(s):  
K. Terui ◽  
M. Ozaki
Keyword(s):  
2018 ◽  
Author(s):  
Da-wei Li ◽  
Chen-xi Zhao ◽  
Le-chen Li ◽  
Jun-jie Zhang ◽  
Wan-dai Xu ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2231
Author(s):  
Qingjun Lu ◽  
Hao Shen ◽  
Han Yu ◽  
Jing Fu ◽  
Hui Dong ◽  
...  

The role of Kupffer cells (KCs) in liver regeneration is complicated and controversial. To investigate the distinct role of F4/80+ KCs at the different stages of the regeneration process, two-thirds partial hepatectomy (PHx) was performed in mice to induce physiological liver regeneration. In pre- or post-PHx, the clearance of KCs by intraperitoneal injection of the anti-F4/80 antibody (α-F4/80) was performed to study the distinct role of F4/80+ KCs during the regenerative process. In RNA sequencing of isolated F4/80+ KCs, the initiation phase was compared with the progression phase. Immunohistochemistry and immunofluorescence staining of Ki67, HNF-4α, CD-31, and F4/80 and Western blot of the TGF-β2 pathway were performed. Depletion of F4/80+ KCs in pre-PHx delayed the peak of hepatocyte proliferation from 48 h to 120 h, whereas depletion in post-PHx unexpectedly led to persistent inhibition of hepatocyte proliferation, indicating the distinct role of F4/80+ KCs in the initiation and progression phases of liver regeneration. F4/80+ KC depletion in post-PHx could significantly increase TGF-β2 serum levels, while TGF-βRI partially rescued the impaired proliferation of hepatocytes. Additionally, F4/80+ KC depletion in post-PHx significantly lowered the expression of oncostatin M (OSM), a key downstream mediator of interleukin-6, which is required for hepatocyte proliferation during liver regeneration. In vivo, recombinant OSM (r-OSM) treatment alleviated the inhibitory effect of α-F4/80 on the regenerative progression. Collectively, F4/80+ KCs release OSM to inhibit TGF-β2 activation, sustaining hepatocyte proliferation by releasing a proliferative brake.


2021 ◽  
Vol 163 ◽  
pp. 255-267
Author(s):  
Raúl P. Oliveira ◽  
Ivo F. Machado ◽  
Carlos M. Palmeira ◽  
Anabela P. Rolo

2001 ◽  
Vol 33 (5-6) ◽  
pp. 334-341 ◽  
Author(s):  
K. Taira ◽  
S. Hiroyasu ◽  
M. Shiraishi ◽  
Y. Muto ◽  
T. Koji

Author(s):  
Tetsuo Takehara ◽  
Naoki Mizutani ◽  
Hayato Hikita ◽  
Yoshinobu Saito ◽  
Yuta Myojin ◽  
...  

Grb2-associated binder 1 (Gab1) is an adaptor protein that is important for intracellular signal transduction by receptor tyrosine kinases that are receptors for various growth factors and plays an important role in rapid liver regeneration after partial hepatectomy and during acute hepatitis. On the other hand, mild liver regeneration is induced in livers of individuals with chronic hepatitis, where hepatocyte apoptosis is persistent; however, the impact of Gab1 on such livers remains unclear. We examined the role of Gab1 in chronic hepatitis. Gab1 knockdown enhanced the decrease in cell viability and apoptosis induced by ABT-737, a Bcl-2/-xL/-w inhibitor, in BNL.CL2 cells, while cell viability and caspase activity were unchanged in the absence of ABT-737. ABT-737 treatment induced Gab1 cleavage to form p35-Gab1. p35-Gab1 was also detected in the livers of mice with hepatocyte-specific Mcl-1 knockout (KO), which causes persistent hepatocyte apoptosis. Gab1 deficiency exacerbated hepatocyte apoptosis in Mcl-1 KO mice with posttranscriptional downregulation of Bcl-XL. In BNL.CL2 cells treated with ABT-737, Gab1 knockdown posttranscriptionally suppressed Bcl-xL expression, and p35-Gab1 overexpression enhanced Bcl-xL expression. Gab1 deficiency in Mcl-1 KO mice activated STAT3 signaling in hepatocytes, increased hepatocyte proliferation, and increased the incidence of liver cancer with the exacerbation of liver fibrosis. In conclusion, Gab1 is cleaved in the presence of apoptotic stimuli and forms p35-Gab1 in hepatocytes. In chronic liver injury, the role of Gab1 in suppressing apoptosis and reducing liver damage, fibrosis, and tumorigenesis is more important than its role in liver regeneration.


2008 ◽  
Vol 22 (S1) ◽  
Author(s):  
Bowen Liu ◽  
Shirish Paranjpe ◽  
William Bowen ◽  
Aaron Bell ◽  
Wendy Mars ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document