partial hepatectomy
Recently Published Documents


TOTAL DOCUMENTS

2446
(FIVE YEARS 212)

H-INDEX

73
(FIVE YEARS 6)

2022 ◽  
Vol 12 ◽  
Author(s):  
Chunliang Xie ◽  
Zhoumei Zhang ◽  
Manyi Yang ◽  
Cha Cao ◽  
Yingjun Zhou ◽  
...  

Emerging evidence indicates that probiotics have been proved to influence liver injury and regeneration. In the present study, the effects of Lactiplantibacillus plantarum AR113 on the liver regeneration were investigated in 70% partial hepatectomy (PHx) rats. Sprague-Dawley (SD) rats were gavaged with L. plantarum AR113 suspensions (1 × 1010 CFU/mL) both before and after partial hepatectomy. The results showed that L. plantarum AR113 administration 2 weeks before partial hepatectomy can accelerate liver regeneration by increased hepatocyte proliferation and tumor necrosis factor-α (TNF-α), hepatocyte growth factor (HGF), and transforming growth factor-β (TGF-β) expression. Probiotic administration enriched Lactobacillus and Bacteroides and depleted Flavonifractor and Acetatifactor in the gut microbiome. Meanwhile, L. plantarum AR113 showed decline of phosphatidylethanolamine (PE), phosphatidylcholine (PC), phosphatidyl serine (PS), and lysophosphatidyl choline (LysoPC) levels in the serum of the rats after the L. plantarum AR113 administration. Moreover, L. plantarum AR113 treated rats exhibited higher concentrations of L-leucine, L-isoleucine, mevalonic acid, and lower 7-oxo-8-amino-nonanoic acid in plasma than that in PHx. Spearman correlation analysis revealed a significant correlation between changes in gut microbiota composition and glycerophospholipid. These results indicate that L. plantarum AR113 is promising for accelerating liver regeneration and provide new insights regarding the correlations among the microbiome, the metabolome, and liver regeneration.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Wei Liu ◽  
Yongquan Shi ◽  
Tao Cheng ◽  
Ruixue Jia ◽  
Ming-Zhong Sun ◽  
...  

In mouse models, the recovery of liver volume is mainly mediated by the proliferation of hepatocytes after partial hepatectomy that is commonly accompanied with ischemia-reperfusion. The identification of differently expressed genes in liver following partial hepatectomy benefits the better understanding of the molecular mechanisms during liver regeneration (LR) with appliable clinical significance. Briefly, studying different gene expression patterns in liver tissues collected from the mice group that survived through extensive hepatectomy will be of huge critical importance in LR than those collected from the mice group that survived through appropriate hepatectomy. In this study, we performed the weighted gene coexpression network analysis (WGCNA) to address the central candidate genes and to construct the free-scale gene coexpression networks using the identified dynamic different expressive genes in liver specimens from the mice with 85% hepatectomy (20% for seven-day survial rate) and 50% hepatectomy (100% for seven-day survial rate under ischemia-reperfusion condition compared with the sham group control mice). The WGCNA combined with Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses pinpointed out the apparent distinguished importance of three gene expression modules: the blue module for apoptotic process, the turquoise module for lipid metabolism, and the green module for fatty acid metabolic process in LR following extensive hepatectomy. WGCNA analysis and protein-protein interaction (PPI) network construction highlighted FAM175B, OGT, and PDE3B were the potential three hub genes in the previously mentioned three modules. This work may help to provide new clues to the future fundamental study and treatment strategy for LR following liver injury and hepatectomy.


2021 ◽  
pp. 1-14
Author(s):  
Xiaoli Niu ◽  
Simin Zheng ◽  
Siyuan Li ◽  
Hongtao Liu

<b><i>Background:</i></b> The current study set out to probe the function of different doses of ketamine in postoperative neurocognitive disorder (PND) in aged mice undergoing partial hepatectomy (PH) with the involvement of the brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein 1 (Bmal1)/n-methyl-D-aspartate (NMDA)/nuclear factor-kappa B (NF-κB) axis. <b><i>Methods:</i></b> First, aged mice were intraperitoneally injected with different doses of ketamine prior to surgery, followed by hepatic lobectomy. Afterward, mice cognitive function was assessed. In addition, Bmal1 mRNA expression patterns were quantified, while NMDA 2B receptor, NF-κB p65, synapsin 1, and postsynaptic density 95 (PSD95) levels were determined; the release of inflammatory factors was detected, and ionized calcium-binding adapter molecule-1 expression was measured to quantify microglia activation. In addition, Bmal1-knockout (Bmal1-KO) mice were intraperitoneally injected with a subanesthetic dose of ketamine to verify the mechanism of Bmal1 in regulating the NMDA 2B subunit (NR2B)/NF-κB axis to affect PH in aged patients. <b><i>Results:</i></b> After PH, hippocampal-dependent memory was impaired, and synapsin 1 and PSD95 levels were downregulated. On the other hand, PH diminished Bmal1 expression but elevated NR2B and NF-κB p65 levels and anesthetic doses of ketamine further regulated the Bmal1/NMDA/NF-κB axis. In Bmal1-KO mice, the NMDA/NF-κB axis was activated, the release of inflammatory cytokines was promoted, and hippocampus-dependent memory was impaired, which were reversed by a subanesthetic dose of ketamine. <b><i>Conclusion:</i></b> Altogether, findings obtained in our study indicated that a subanesthetic dose of ketamine activated Bmal1, downregulated the NMDA/NF-κB axis, and reduced inflammation and microglia activation to alleviate PND in aged mice undergoing PH.


2021 ◽  
pp. 110227
Author(s):  
Zongding Wang ◽  
Tiemin Jiang ◽  
Tuerganaili Aji ◽  
Kalibixiati Aimulajiang ◽  
Yanshi Liu ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Runbin Sun ◽  
Haokai Zhao ◽  
Shuzhen Huang ◽  
Ran Zhang ◽  
Zhenyao Lu ◽  
...  

Liver has an ability to regenerate itself in mammals, whereas the mechanism has not been fully explained. Here we used a GC/MS-based metabolomic method to profile the dynamic endogenous metabolic change in the serum of C57BL/6J mice at different times after 2/3 partial hepatectomy (PHx), and nine machine learning methods including Least Absolute Shrinkage and Selection Operator Regression (LASSO), Partial Least Squares Regression (PLS), Principal Components Regression (PCR), k-Nearest Neighbors (KNN), Support Vector Machines (SVM), Random Forest (RF), eXtreme Gradient Boosting (xgbDART), Neural Network (NNET) and Bayesian Regularized Neural Network (BRNN) were used for regression between the liver index and metabolomic data at different stages of liver regeneration. We found a tree-based random forest method that had the minimum average Mean Absolute Error (MAE), Root Mean Squared Error (RMSE) and the maximum R square (R2) and is time-saving. Furthermore, variable of importance in the project (VIP) analysis of RF method was performed and metabolites with VIP ranked top 20 were selected as the most critical metabolites contributing to the model. Ornithine, phenylalanine, 2-hydroxybutyric acid, lysine, etc. were chosen as the most important metabolites which had strong correlations with the liver index. Further pathway analysis found Arginine biosynthesis, Pantothenate and CoA biosynthesis, Galactose metabolism, Valine, leucine and isoleucine degradation were the most influenced pathways. In summary, several amino acid metabolic pathways and glucose metabolism pathway were dynamically changed during liver regeneration. The RF method showed advantages for predicting the liver index after PHx over other machine learning methods used and a metabolic clock containing four metabolites is established to predict the liver index during liver regeneration.


2021 ◽  
pp. 739-760

BACKGROUND/AIMS: Liver is considered as the vital organ in the body as it performs various essential functions. Following an injury to the liver, the repair process even though initially beneficial becomes pathogenic when it is not controlled appropriately. Extensive accumulation of extracellular matrix (ECM) components can ultimately lead to cirrhosis and liver failure. Thus, the ideal strategy to treat a liver injury is to generate new hepatocytes replacing damaged cells without causing excessive ECM deposition. The objective of this study was to evaluate the potential of mesenchymal stem cells, conditioned media and murine epidermal growth factor (m-EGF) in liver regeneration following partial hepatectomy in a rat model. METHODS: The animals were anaesthetized and a midline laparotomy was done. The liver was exposed and the left lateral and median lobes were ligated and resected out (about 65-70% of total liver mass). The muscles and skin were sutured in routine fashion and thus the rat model of partial hepatectomy was prepared. The animal models were equally distributed into 4 different groups namely A, B, C and D and treated with PBS, conditioned media, mesenchymal stem cells and epidermal growth factor respectively. The liver regeneration was assessed based on clinical, haemato-biochemical, colour imaging, histopathological and immune-histochemical parameters. RESULTS: Partial hepatectomy model with surgical removal of 65-70% liver lobe was standardized and successfully used in this study. Alkaline phosphatase (ALP), gamma glutamyl transferase (GGT), bilirubin, transaminases were significantly higher (P<0.05) in group A indicating that the liver damage was not restored properly. Colour digital imaging, histopathological and immune-histochemistry observations revealed that a better liver regeneration was observed in groups C and D, followed by groups B and A. Regeneration coefficient calculated based on liver weight was higher in groups C and D as compared to group A. CONCLUSION: Rat bone marrow-derived mesenchymal stem cells were found to induce hepatocytes proliferation; whereas EGF induced more angiogenesis. Conditioned media was not as effective as stem cells and EGF in liver tissue repair.


Sign in / Sign up

Export Citation Format

Share Document