scholarly journals A mechanical algorithm for constructing structural constants of the Lie algebra of symmetry of differential equations based on Wu's method

2019 ◽  
Vol 49 (5) ◽  
pp. 751
Author(s):  
Su Dao ◽  
Yao Yufeng ◽  
Wei Kangkang ◽  
Temuer Chaolu
Symmetry ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 378 ◽  
Author(s):  
Temuer Chaolu ◽  
Sudao Bilige

In this paper, we present an application of Wu’s method (differential characteristic set (dchar-set) algorithm) for computing the symmetry of (partial) differential equations (PDEs) that provides a direct and systematic procedure to obtain the classical and nonclassical symmetry of the differential equations. The fundamental theory and subalgorithms used in the proposed algorithm consist of a different version of the Lie criterion for the classical symmetry of PDEs and the zero decomposition algorithm of a differential polynomial (d-pol) system (DPS). The version of the Lie criterion yields determining equations (DTEs) of symmetries of differential equations, even those including a nonsolvable equation. The decomposition algorithm is used to solve the DTEs by decomposing the zero set of the DPS associated with the DTEs into a union of a series of zero sets of dchar-sets of the system, which leads to simplification of the computations.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Tonglaga Bai ◽  
Temuer Chaolu

Solving nonclassical symmetry of partial differential equations (PDEs) is a challenging problem in applications of symmetry method. In this paper, an alternative method is proposed for computing the nonclassical symmetry of PDEs. The method consists of the following three steps: firstly, a relationship between the classical and nonclassical symmetries of PDEs is established; then based on the link, we give three principles to obtain additional equations (constraints) to extend the system of the determining equations of the nonclassical symmetry. The extended system is more easily solved than the original one; thirdly, we use Wu’s method to solve the extended system. Consequently, the nonclassical symmetries are determined. Due to the fact that some constraints may produce trivial results, we name the candidate constraints as “potential” ones. The method gives a new way to determine a nonclassical symmetry. Several illustrative examples are given to show the efficiency of the presented method.


2019 ◽  
Vol 4 (1) ◽  
pp. 149-155
Author(s):  
Kholmatzhon Imomnazarov ◽  
Ravshanbek Yusupov ◽  
Ilham Iskandarov

This paper studies a class of partial differential equations of second order , with arbitrary functions and , with the help of the group classification. The main Lie algebra of infinitely infinitesimal symmetries is three-dimensional. We use the method of preliminary group classification for obtaining the classifications of these equations for a one-dimensional extension of the main Lie algebra.


2005 ◽  
Vol 02 (01) ◽  
pp. 111-125 ◽  
Author(s):  
PAOLO ANIELLO

We show that, given a matrix Lie group [Formula: see text] and its Lie algebra [Formula: see text], a 1-parameter subgroup of [Formula: see text] whose generator is the sum of an unperturbed matrix Â0 and an analytic perturbation Â♢(λ) can be mapped — under suitable conditions — by a similarity transformation depending analytically on the perturbative parameter λ, onto a 1-parameter subgroup of [Formula: see text] generated by a matrix [Formula: see text] belonging to the centralizer of Â0 in [Formula: see text]. Both the similarity transformation and the matrix [Formula: see text] can be determined perturbatively, hence allowing a very convenient perturbative expansion of the original 1-parameter subgroup.


Sign in / Sign up

Export Citation Format

Share Document