PERTURBATIVE SOLUTIONS OF DIFFERENTIAL EQUATIONS IN LIE GROUPS

2005 ◽  
Vol 02 (01) ◽  
pp. 111-125 ◽  
Author(s):  
PAOLO ANIELLO

We show that, given a matrix Lie group [Formula: see text] and its Lie algebra [Formula: see text], a 1-parameter subgroup of [Formula: see text] whose generator is the sum of an unperturbed matrix Â0 and an analytic perturbation Â♢(λ) can be mapped — under suitable conditions — by a similarity transformation depending analytically on the perturbative parameter λ, onto a 1-parameter subgroup of [Formula: see text] generated by a matrix [Formula: see text] belonging to the centralizer of Â0 in [Formula: see text]. Both the similarity transformation and the matrix [Formula: see text] can be determined perturbatively, hence allowing a very convenient perturbative expansion of the original 1-parameter subgroup.

2019 ◽  
Vol 31 (4) ◽  
pp. 815-842
Author(s):  
Luiz A. B. San Martin ◽  
Laercio J. Santos

Abstract Let G be a noncompact semi-simple Lie group with Iwasawa decomposition {G=KAN} . For a semigroup {S\subset G} with nonempty interior we find a domain of convergence of the Helgason–Laplace transform {I_{S}(\lambda,u)=\int_{S}e^{\lambda(\mathsf{a}(g,u))}\,dg} , where dg is the Haar measure of G, {u\in K} , {\lambda\in\mathfrak{a}^{\ast}} , {\mathfrak{a}} is the Lie algebra of A and {gu=ke^{\mathsf{a}(g,u)}n\in KAN} . The domain is given in terms of a flag manifold of G written {\mathbb{F}_{\Theta(S)}} called the flag type of S, where {\Theta(S)} is a subset of the simple system of roots. It is proved that {I_{S}(\lambda,u)<\infty} if λ belongs to a convex cone defined from {\Theta(S)} and {u\in\pi^{-1}(\mathcal{D}_{\Theta(S)}(S))} , where {\mathcal{D}_{\Theta(S)}(S)\subset\mathbb{F}_{\Theta(S)}} is a B-convex set and {\pi:K\rightarrow\mathbb{F}_{\Theta(S)}} is the natural projection. We prove differentiability of {I_{S}(\lambda,u)} and apply the results to construct of a Riemannian metric in {\mathcal{D}_{\Theta(S)}(S)} invariant by the group {S\cap S^{-1}} of units of S.


Author(s):  
Tobias Diez ◽  
Bas Janssens ◽  
Karl-Hermann Neeb ◽  
Cornelia Vizman

Abstract Let $M$ be a manifold with a closed, integral $(k+1)$-form $\omega $, and let $G$ be a Fréchet–Lie group acting on $(M,\omega )$. As a generalization of the Kostant–Souriau extension for symplectic manifolds, we consider a canonical class of central extensions of ${\mathfrak{g}}$ by ${\mathbb{R}}$, indexed by $H^{k-1}(M,{\mathbb{R}})^*$. We show that the image of $H_{k-1}(M,{\mathbb{Z}})$ in $H^{k-1}(M,{\mathbb{R}})^*$ corresponds to a lattice of Lie algebra extensions that integrate to smooth central extensions of $G$ by the circle group ${\mathbb{T}}$. The idea is to represent a class in $H_{k-1}(M,{\mathbb{Z}})$ by a weighted submanifold $(S,\beta )$, where $\beta $ is a closed, integral form on $S$. We use transgression of differential characters from $ S$ and $ M $ to the mapping space $ C^\infty (S, M) $ and apply the Kostant–Souriau construction on $ C^\infty (S, M) $.


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Z. E. Musielak ◽  
N. Davachi ◽  
M. Rosario-Franco

A set of linear second-order differential equations is converted into a semigroup, whose algebraic structure is used to generate novel equations. The Lagrangian formalism based on standard, null, and nonstandard Lagrangians is established for all members of the semigroup. For the null Lagrangians, their corresponding gauge functions are derived. The obtained Lagrangians are either new or generalization of those previously known. The previously developed Lie group approach to derive some equations of the semigroup is also described. It is shown that certain equations of the semigroup cannot be factorized, and therefore, their Lie groups cannot be determined. A possible solution of this problem is proposed, and the relationship between the Lagrangian formalism and the Lie group approach is discussed.


2009 ◽  
Vol 19 (03) ◽  
pp. 337-345 ◽  
Author(s):  
JUAN C. BENJUMEA ◽  
JUAN NÚÑEZ ◽  
ÁNGEL F. TENORIO

This paper shows an algorithm which computes the law of the Lie algebra associated with the complex Lie group of n × n upper-triangular matrices with exponential elements in their main diagonal. For its implementation two procedures are used, respectively, to define a basis of the Lie algebra and the nonzero brackets in its law with respect to that basis. These brackets constitute the final output of the algorithm, whose unique input is the matrix order n. Besides, its complexity is proved to be polynomial and some complementary computational data relative to its implementation are also shown.


Acta Numerica ◽  
2000 ◽  
Vol 9 ◽  
pp. 215-365 ◽  
Author(s):  
Arieh Iserles ◽  
Hans Z. Munthe-Kaas ◽  
Syvert P. Nørsett ◽  
Antonella Zanna

Many differential equations of practical interest evolve on Lie groups or on manifolds acted upon by Lie groups. The retention of Lie-group structure under discretization is often vital in the recovery of qualitatively correct geometry and dynamics and in the minimization of numerical error. Having introduced requisite elements of differential geometry, this paper surveys the novel theory of numerical integrators that respect Lie-group structure, highlighting theory, algorithmic issues and a number of applications.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jonas Deré ◽  
Marcos Origlia

Abstract Every simply connected and connected solvable Lie group 𝐺 admits a simply transitive action on a nilpotent Lie group 𝐻 via affine transformations. Although the existence is guaranteed, not much is known about which Lie groups 𝐺 can act simply transitively on which Lie groups 𝐻. So far, the focus was mainly on the case where 𝐺 is also nilpotent, leading to a characterization depending only on the corresponding Lie algebras and related to the notion of post-Lie algebra structures. This paper studies two different aspects of this problem. First, we give a method to check whether a given action ρ : G → Aff ⁡ ( H ) \rho\colon G\to\operatorname{Aff}(H) is simply transitive by looking only at the induced morphism φ : g → aff ⁡ ( h ) \varphi\colon\mathfrak{g}\to\operatorname{aff}(\mathfrak{h}) between the corresponding Lie algebras. Secondly, we show how to check whether a given solvable Lie group 𝐺 acts simply transitively on a given nilpotent Lie group 𝐻, again by studying properties of the corresponding Lie algebras. The main tool for both methods is the semisimple splitting of a solvable Lie algebra and its relation to the algebraic hull, which we also define on the level of Lie algebras. As an application, we give a full description of the possibilities for simply transitive actions up to dimension 4.


1994 ◽  
Vol 46 (2) ◽  
pp. 438-448 ◽  
Author(s):  
N. TH. Varopoulos
Keyword(s):  

AbstractThe heat kernel of an amenable Lie group satisfies either pt ~ exp(—ct1/3) or pt ~ t-a as t → ∞. We give a condition on the Lie algebra which characterizes the two cases.


2011 ◽  
Vol 148 (3) ◽  
pp. 807-834 ◽  
Author(s):  
Giorgio Trentinaglia ◽  
Chenchang Zhu

AbstractWe define stacky Lie groups to be group objects in the 2-category of differentiable stacks. We show that every connected and étale stacky Lie group is equivalent to a crossed module of the form (Γ,G) where Γ is the fundamental group of the given stacky Lie group and G is the connected and simply connected Lie group integrating the Lie algebra of the stacky group. Our result is closely related to a strictification result of Baez and Lauda.


2009 ◽  
Vol 146 (2) ◽  
pp. 351-378 ◽  
Author(s):  
K. H. HOFMANN ◽  
K.-H. NEEB

AbstractA pro-Lie group is a projective limit of a family of finite-dimensional Lie groups. In this paper we show that a pro-Lie group G is a Lie group in the sense that its topology is compatible with a smooth manifold structure for which the group operations are smooth if and only if G is locally contractible. We also characterize the corresponding pro-Lie algebras in various ways. Furthermore, we characterize those pro-Lie groups which are locally exponential, that is, they are Lie groups with a smooth exponential function which maps a zero neighbourhood in the Lie algebra diffeomorphically onto an open identity neighbourhood of the group.


Author(s):  
S.-T. Tsou ◽  
A. G. Walker

A Lie group is said to be metrisable if it admits a Riemannian metric which is invariant under all translations of the group. It is shown that the study of such groups reduces to the study of what are called metrisable Lie algebras, and some necessary conditions for a Lie algebra to be metrisable are given. Various decomposition and existence theorems are also given, and it is shown that every metrisable algebra is the product of an abelian algebra and a number of non-decomposable reduced algebras. The number of independent metrics admitted by a metrisable algebra is examined, and it is shown that the metric is unique when and only when the complex extension of the algebra is simple.


Sign in / Sign up

Export Citation Format

Share Document