perturbative expansion
Recently Published Documents


TOTAL DOCUMENTS

181
(FIVE YEARS 36)

H-INDEX

22
(FIVE YEARS 2)

2022 ◽  
Vol 258 ◽  
pp. 10002
Author(s):  
Paul Hoyer

Bound state perturbation theory is well established for QED atoms. Today the hyperfine splitting of Positronium is known to 𝒪 (α7 log α). Whereas standard expansions of scattering amplitudes start from free states, bound states are expanded around eigenstates of the Hamiltonian including a binding potential. The eigenstate wave functions have all powers of α, requiring a choice in the ordering of the perturbative expansion. Temporal (A0 = 0) gauge permits an expansion starting from valence Fock states, bound by their instantaneous gauge field. This formulation is applicable in any frame and seems promising even for hadrons in QCD. The 𝒪(αs0) confining potential is determined (up to a universal scale) by a homogeneous solution of Gauss’ law.


2022 ◽  
Vol 82 (1) ◽  
Author(s):  
Luca Buonocore ◽  
Massimiliano Grazzini ◽  
Jürg Haag ◽  
Luca Rottoli

AbstractWe consider the associated production of a vector or Higgs boson with a jet in hadronic collisions. When the transverse momentum $$q_T$$ q T of the boson-jet system is much smaller than its invariant mass Q, the QCD perturbative expansion is affected by large logarithmic terms that must be resummed to all orders. We discuss the all-order resummation structure of the logarithmically enhanced contributions up to next-to-leading logarithmic accuracy. Resummation is performed at the differential level with respect to the kinematical variables of the boson-jet system. Soft-parton radiation produces azimuthal correlations that are fully accounted for in our framework. We present explicit analytical results for the resummation coefficients up to next-to-leading order and next-to-leading logarithmic accuracy, that include the exact dependence on the jet radius.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Gavin P. Salam ◽  
Emma Slade

Abstract Fixed-order perturbative calculations of fiducial cross sections for two-body decay processes at colliders show disturbing sensitivity to unphysically low momentum scales and, in the case of H → γγ in gluon fusion, poor convergence. Such problems have their origins in an interplay between the behaviour of standard experimental cuts at small transverse momenta (pt) and logarithmic perturbative contributions. We illustrate how this interplay leads to a factorially divergent structure in the perturbative series that sets in already from the first orders. We propose simple modifications of fiducial cuts to eliminate their key incriminating characteristic, a linear dependence of the acceptance on the Higgs or Z-boson pt, replacing it with quadratic dependence. This brings major improvements in the behaviour of the perturbative expansion. More elaborate cuts can achieve an acceptance that is independent of the Higgs pt at low pt, with a variety of consequent advantages.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
James T. Liu ◽  
Robert J. Saskowski

Abstract We study subleading corrections to the genus-zero free energy of the $$ \mathcal{N} $$ N = 3 Gaiotto-Tomasiello theory. In general, we obtain the endpoints and free energy as a set of parametric equations via contour integrals of the planar resolvent, up to exponentially suppressed corrections. In the particular case that the two gauge groups in the quiver are of equal rank, we find an explicit (perturbative) expansion for the free energy. If, additionally, both groups have equal levels, then we find the full expression for the genus-zero free energy, modulo exponentially suppressed corrections. We also verify our results numerically.


2021 ◽  
Vol 10 (6) ◽  
Author(s):  
Tyler corbett ◽  
Michael Trott

We verify Standard Model Effective Field Theory Ward identities to one loop order when background field gauge is used to quantize the theory. The results we present lay the foundation of next to leading order automatic generation of results in the SMEFT, in both the perturbative and non-perturbative expansion using the geoSMEFT formalism, and background field gauge.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Anshuman Dey ◽  
Mikhail Goykhman ◽  
Michael Smolkin

Abstract We study perturbative renormalization of the composite operators in the $$ T\overline{T} $$ T T ¯ -deformed two-dimensional free field theories. The pattern of renormalization for the stress-energy tensor is different in the massive and massless cases. While in the latter case the canonical stress tensor is not renormalized up to high order in the perturbative expansion, in the massive theory there are induced counterterms at linear order. For a massless theory our results match the general formula derived recently in [1].


2021 ◽  
Vol 81 (6) ◽  
Author(s):  
Stefano Catani ◽  
Ignacio Fabre ◽  
Massimiliano Grazzini ◽  
Stefan Kallweit

AbstractWe consider QCD radiative corrections to the associated production of a heavy-quark pair ($$Q{{\bar{Q}}}$$ Q Q ¯ ) with a generic colourless system F at hadron colliders. We discuss the resummation formalism for the production of the $$Q{{\bar{Q}}}F$$ Q Q ¯ F system at small values of its total transverse momentum $$q_T$$ q T . We present the results of the corresponding resummation coefficients at next-to-leading and, partly, next-to-next-to-leading order. The perturbative expansion of the resummation formula leads to the explicit ingredients that can be used to apply the $$q_T$$ q T subtraction formalism to fixed-order calculations for this class of processes. We use the $$q_T$$ q T subtraction formalism to perform a fully differential perturbative computation for the production of a top-antitop quark pair and a Higgs boson. At next-to-leading order we compare our results with those obtained with established subtraction methods and we find complete agreement. We present, for the first time, the results for the flavour off-diagonal partonic channels at the next-to-next-to-leading order.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Oliver Gould ◽  
Tuomas V. I. Tenkanen

Abstract We revisit the perturbative expansion at high temperature and investigate its convergence by inspecting the renormalisation scale dependence of the effective potential. Although at zero temperature the renormalisation group improved effective potential is scale independent at one-loop, we show how this breaks down at high temperature, due to the misalignment of loop and coupling expansions. Following this, we show how one can recover renormalisation scale independence at high temperature, and that it requires computations at two-loop order. We demonstrate how this resolves some of the huge theoretical uncertainties in the gravitational wave signal of first-order phase transitions, though uncertainties remain stemming from the computation of the bubble nucleation rate.


2021 ◽  
Vol 81 (6) ◽  
Author(s):  
Manuel Hohmann

AbstractWe present a package for the computer algebra system Mathematica, which implements the parametrized post-Newtonian (PPN) formalism. This package, named xPPN, is built upon the widely used tensor algebra package suite xAct, and in particular the package xTensor therein. The main feature of xPPN is to provide functions to perform a proper $$3+1$$ 3 + 1 decomposition of tensors, as well as a perturbative expansion in so-called velocity orders, which are central tasks in the PPN formalism. Further, xPPN implements various rules for quantities appearing in the PPN formalism, which aid in perturbatively solving the field equations of any metric theory of gravity. Besides Riemannian geometry, also teleparallel and symmetric teleparallel geometry are implemented.


Author(s):  
J. de-la-Cruz-Moreno ◽  
H. García-Compeán ◽  
E. López-González

The perturbative expansion of Chern–Simons gauge theory leads to invariants of knots and links, the so-called finite type invariants or Vassiliev invariants. It has been proved that at any order in perturbation theory the superposition of certain amplitudes is an invariant of that order. Bott–Taubes integrals on configuration spaces are introduced in the present context to write Feynman diagrams at a given order in perturbation theory in a geometrical and topological framework. One of the consequences of this formalism is that the resulting amplitudes are rewritten in cohomological terms in configuration spaces. This cohomological structure can be used to translate Bott–Taubes integrals into Chern–Simons perturbative amplitudes and vice versa. In this paper, this program is performed up to third order in the coupling constant. This expands some work previously worked out by Thurston. Finally we take advantage of these results to incorporate in the formalism a smooth and divergenceless vector field on the 3-manifold. The Bott–Taubes integrals obtained are used for constructing higher-order average asymptotic Vassiliev invariants extending the work of Komendarczyk and Volić.


Sign in / Sign up

Export Citation Format

Share Document