scholarly journals Decomposition-optimization-ensemble learning approach for electricity price forecasting

2018 ◽  
Vol 48 (10) ◽  
pp. 1300-1315 ◽  
Author(s):  
Jiaqi HE ◽  
Tianhai TIAN ◽  
Zhigang ZENG ◽  
Feng JIANG
Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5190 ◽  
Author(s):  
Matheus Ribeiro ◽  
Stéfano Stefenon ◽  
José de Lima ◽  
Ademir Nied ◽  
Viviana Mariani ◽  
...  

Electricity price forecasting plays a vital role in the financial markets. This paper proposes a self-adaptive, decomposed, heterogeneous, and ensemble learning model for short-term electricity price forecasting one, two, and three-months-ahead in the Brazilian market. Exogenous variables, such as supply, lagged prices and demand are considered as inputs signals of the forecasting model. Firstly, the coyote optimization algorithm is adopted to tune the hyperparameters of complementary ensemble empirical mode decomposition in the pre-processing phase. Next, three machine learning models, including extreme learning machine, gradient boosting machine, and support vector regression models, as well as Gaussian process, are designed with the intent of handling the components obtained through the signal decomposition approach with focus on time series forecasting. The individual forecasting models are directly integrated in order to obtain the final forecasting prices one to three-months-ahead. In this case, a grid of forecasting models is obtained. The best forecasting model is the one that has better generalization out-of-sample. The empirical results show the efficiency of the proposed model. Additionally, it can achieve forecasting errors lower than 4.2% in terms of symmetric mean absolute percentage error. The ranking of importance of the variables, from the smallest to the largest is, lagged prices, demand, and supply. This paper provided useful insights for multi-step-ahead forecasting in the electrical market, once the proposed model can enhance forecasting accuracy and stability.


Forecasting ◽  
2021 ◽  
Vol 3 (3) ◽  
pp. 460-477
Author(s):  
Sajjad Khan ◽  
Shahzad Aslam ◽  
Iqra Mustafa ◽  
Sheraz Aslam

Day-ahead electricity price forecasting plays a critical role in balancing energy consumption and generation, optimizing the decisions of electricity market participants, formulating energy trading strategies, and dispatching independent system operators. Despite the fact that much research on price forecasting has been published in recent years, it remains a difficult task because of the challenging nature of electricity prices that includes seasonality, sharp fluctuations in price, and high volatility. This study presents a three-stage short-term electricity price forecasting model by employing ensemble empirical mode decomposition (EEMD) and extreme learning machine (ELM). In the proposed model, the EEMD is employed to decompose the actual price signals to overcome the non-linear and non-stationary components in the electricity price data. Then, a day-ahead forecasting is performed using the ELM model. We conduct several experiments on real-time data obtained from three different states of the electricity market in Australia, i.e., Queensland, New South Wales, and Victoria. We also implement various deep learning approaches as benchmark methods, i.e., recurrent neural network, multi-layer perception, support vector machine, and ELM. In order to affirm the performance of our proposed and benchmark approaches, this study performs several performance evaluation metric, including the Diebold–Mariano (DM) test. The results from the experiments show the productiveness of our developed model (in terms of higher accuracy) over its counterparts.


Sign in / Sign up

Export Citation Format

Share Document