Hybrid regularization method for the ill-posed inversion of multiwavelength lidar data in the retrieval of aerosol size distributions

2001 ◽  
Vol 40 (9) ◽  
pp. 1329 ◽  
Author(s):  
Christine Böckmann
2020 ◽  
Vol 18 (1) ◽  
pp. 1685-1697
Author(s):  
Zhenyu Zhao ◽  
Lei You ◽  
Zehong Meng

Abstract In this paper, a Cauchy problem for the Laplace equation is considered. We develop a modified Tikhonov regularization method based on Hermite expansion to deal with the ill posed-ness of the problem. The regularization parameter is determined by a discrepancy principle. For various smoothness conditions, the solution process of the method is uniform and the convergence rate can be obtained self-adaptively. Numerical tests are also carried out to verify the effectiveness of the method.


2000 ◽  
Vol 31 (12) ◽  
pp. 1433-1445 ◽  
Author(s):  
A. Voutilainen ◽  
F. Stratmann ◽  
J.P. Kaipio

2016 ◽  
Vol 26 (3) ◽  
pp. 623-640 ◽  
Author(s):  
Sara Beddiaf ◽  
Laurent Autrique ◽  
Laetitia Perez ◽  
Jean-Claude Jolly

Abstract Inverse three-dimensional heat conduction problems devoted to heating source localization are ill posed. Identification can be performed using an iterative regularization method based on the conjugate gradient algorithm. Such a method is usually implemented off-line, taking into account observations (temperature measurements, for example). However, in a practical context, if the source has to be located as fast as possible (e.g., for diagnosis), the observation horizon has to be reduced. To this end, several configurations are detailed and effects of noisy observations are investigated.


2014 ◽  
Vol 7 (9) ◽  
pp. 3095-3112 ◽  
Author(s):  
P. Sawamura ◽  
D. Müller ◽  
R. M. Hoff ◽  
C. A. Hostetler ◽  
R. A. Ferrare ◽  
...  

Abstract. Retrievals of aerosol microphysical properties (effective radius, volume and surface-area concentrations) and aerosol optical properties (complex index of refraction and single-scattering albedo) were obtained from a hybrid multiwavelength lidar data set for the first time. In July 2011, in the Baltimore–Washington DC region, synergistic profiling of optical and microphysical properties of aerosols with both airborne (in situ and remote sensing) and ground-based remote sensing systems was performed during the first deployment of DISCOVER-AQ. The hybrid multiwavelength lidar data set combines ground-based elastic backscatter lidar measurements at 355 nm with airborne High-Spectral-Resolution Lidar (HSRL) measurements at 532 nm and elastic backscatter lidar measurements at 1064 nm that were obtained less than 5 km apart from each other. This was the first study in which optical and microphysical retrievals from lidar were obtained during the day and directly compared to AERONET and in situ measurements for 11 cases. Good agreement was observed between lidar and AERONET retrievals. Larger discrepancies were observed between lidar retrievals and in situ measurements obtained by the aircraft and aerosol hygroscopic effects are believed to be the main factor in such discrepancies.


2018 ◽  
Vol 10 (11) ◽  
pp. 1753 ◽  
Author(s):  
Huige Di ◽  
Qiyu Wang ◽  
Hangbo Hua ◽  
Siwen Li ◽  
Qing Yan ◽  
...  

The use of Raman and high-spectral lidars enables measurements of a stratospheric aerosol extinction profile independent of backscatter, and a multi-wavelength (MW) lidar can obtain additional information that can aid in retrieving the microphysical characteristics of the sampled aerosol. The inversion method for retrieving aerosol particle size distributions and microphysical particle parameters from MW lidar data was studied. An inversion algorithm for retrieving aerosol particle size distributions based on the regularization method was established. Based on the inversion of regularization, the inversion method was optimized by choosing the base function closest to the aerosol distribution. The logarithmic normal distribution function was selected over the triangle function as the base function for the inversion. The averaging procedure was carried out for three main types of aerosol. The 1% averaging result near the minimum of the discrepancy gave the best estimate of the particle parameters. The accuracy and stabilization of the optimized algorithm for microphysical parameters were tested by scores of aerosol size distributions. The systematic effects and random errors impacting the inversion were also considered, and the algorithm was tested by the data, showing 10% systematic error and 15% random error. At the same time, the reliability of the proposed algorithm was also verified by using the aerosol particle size distribution data of the aircraft. The inversion results showed that the algorithm was reliable in retrieving the aerosol particle size distributions at vertical heights using lidar data.


Sign in / Sign up

Export Citation Format

Share Document