Low Power, High Speed, All-Optical Logic Gates Basedon Optical Bistability in Graphene-ContainingCompact Microdisk Resonators

2021 ◽  
Author(s):  
Peyman Keshtkar ◽  
Mehdi Miri ◽  
Navid Yasrebi
Author(s):  
Shuai Zhao ◽  
Hongyu Hu

The scheme to realize high speed (~250Gb/s) all-optical Boolean logic gates using semiconductor optica amplifiers with quantum-dot (QD-SOA) is introduced and analyzed in this review. Numerical simulation method was presented by solving the rate equation and taking into account nonlinear dynamics including carrier heating and spectral hole-burning. Binary phase shift keyed (BPSK) signal and on-off keyed signal are used to generate high speed all-optical logic gates. The applications based on all-optical logic gates such as, all-optical latches, pseudo random bit sequence (PRBS) generation and all-optical encryption, are also discussed in this review. Results show that the scheme based on QD-SOA is a promising method for the realization of high speed all-optical communication system in the future.


2005 ◽  
Vol 41 (7) ◽  
pp. 435 ◽  
Author(s):  
A. Bogoni ◽  
L. Potì ◽  
R. Proietti ◽  
G. Meloni ◽  
F. Ponzini ◽  
...  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hassan Mamnoon-Sofiani ◽  
Sahel Javahernia

Abstract All optical logic gates are building blocks for all optical data processors. One way of designing optical logic gates is using threshold switching which can be realized by combining an optical resonator with nonlinear Kerr effect. In this paper we showed that a novel structure consisting of nonlinear photonic crystal ring resonator which can be used for realizing optical NAND/NOR and majority gates. The delay time of the proposed NAND/NOR and majority gates are 2.5 ps and 1.5 ps respectively. Finite difference time domain and plane wave expansion methods were used for simulating the proposed optical logic gates. The total footprint of the proposed structure is about 988 μm2.


2002 ◽  
Vol 38 (1) ◽  
pp. 37-46 ◽  
Author(s):  
T. Yabu ◽  
M. Geshiro ◽  
T. Kitamura ◽  
K. Nishida ◽  
S. Sawa

Sign in / Sign up

Export Citation Format

Share Document