Beating the wavelength limit: three-dimensional imaging of buried subwavelength fractures in sculpture and construction materials by terahertz time-domain reflection spectroscopy

2013 ◽  
Vol 52 (3) ◽  
pp. 375 ◽  
Author(s):  
M. Schwerdtfeger ◽  
E. Castro-Camus ◽  
K. Krügener ◽  
W. Viöl ◽  
M. Koch
2016 ◽  
Vol 55 (2) ◽  
pp. 360 ◽  
Author(s):  
Jie Cao ◽  
Qun Hao ◽  
Yang Cheng ◽  
Yuxin Peng ◽  
Kaiyu Zhang ◽  
...  

1996 ◽  
Vol 34 (1) ◽  
pp. 27
Author(s):  
Sue Yon Shim ◽  
Ki Joon Sung ◽  
Young Ju Kim ◽  
In Soo Hong ◽  
Myung Soon Kim ◽  
...  

2020 ◽  
Vol 27 (1) ◽  
pp. 29-38
Author(s):  
Teng Zhang ◽  
Junsheng Ren ◽  
Lu Liu

AbstractA three-dimensional (3D) time-domain method is developed to predict ship motions in waves. To evaluate the Froude-Krylov (F-K) forces and hydrostatic forces under the instantaneous incident wave profile, an adaptive mesh technique based on a quad-tree subdivision is adopted to generate instantaneous wet meshes for ship. For quadrilateral panels under both mean free surface and instantaneous incident wave profiles, Froude-Krylov forces and hydrostatic forces are computed by analytical exact pressure integration expressions, allowing for considerably coarse meshes without loss of accuracy. And for quadrilateral panels interacting with the wave profile, F-K and hydrostatic forces are evaluated following a quad-tree subdivision. The transient free surface Green function (TFSGF) is essential to evaluate radiation and diffraction forces based on linear theory. To reduce the numerical error due to unclear partition, a precise integration method is applied to solve the TFSGF in the partition computation time domain. Computations are carried out for a Wigley hull form and S175 container ship, and the results show good agreement with both experimental results and published results.


Author(s):  
Lukas Helfen ◽  
Thilo F. Morgeneyer ◽  
Feng Xu ◽  
Mark N. Mavrogordato ◽  
Ian Sinclair ◽  
...  

2018 ◽  
Author(s):  
Yi Chen Mazumdar ◽  
Michael E. Smyser ◽  
Jeffery Dean Heyborne ◽  
Daniel Robert Guildenbecher

Sign in / Sign up

Export Citation Format

Share Document