Hyperspectral analysis of objects under shadow conditions based on field reflectance measurements

2019 ◽  
Vol 58 (17) ◽  
pp. 4797 ◽  
Author(s):  
Weixin Zhai ◽  
Wei Zhang ◽  
Bo Chen ◽  
Chengqi Cheng
2008 ◽  
Vol 10 (10) ◽  
pp. 104020 ◽  
Author(s):  
Christian Weber ◽  
Daniel C Schinca ◽  
Jorge O Tocho ◽  
Fabian Videla

2006 ◽  
Vol 63 (2) ◽  
pp. 130-138 ◽  
Author(s):  
Alexandre Cândido Xavier ◽  
Bernardo Friedrich Theodor Rudorff ◽  
Mauricio Alves Moreira ◽  
Brummer Seda Alvarenga ◽  
José Guilherme de Freitas ◽  
...  

Hyperspectral crop reflectance data are useful for several remote sensing applications in agriculture, but there is still a need for studies to define optimal wavebands to estimate crop biophysical parameters. The objective of this work is to analyze the use of narrow and broad band vegetation indices (VI) derived from hyperspectral field reflectance measurements to estimate wheat (Triticum aestivum L.) grain yield and plant height. A field study was conducted during the winter growing season of 2003 in Campinas, São Paulo State, Brazil. Field canopy reflectance measurements were acquired at six wheat growth stages over 80 plots with four wheat cultivars (IAC-362, IAC-364, IAC-370, and IAC-373), five levels of nitrogen fertilizer (0, 30, 60, 90, and 120 kg of N ha-1) and four replicates. The following VI were analyzed: a) hyperspectral or narrow-band VI (1. optimum multiple narrow-band reflectance, OMNBR; 2. narrow-band normalized difference vegetation index, NB_NDVI; 3. first- and second-order derivative of reflectance; and 4. four derivative green vegetation index); and b) broad band VI (simple ratio, SR; normalized difference vegetation index, NDVI; and soil-adjusted vegetation index, SAVI). Hyperspectral indices provided an overall better estimate of biophysical variables when compared to broad band VI. The OMNBR with four bands presented the highest R² values to estimate both grain yield (R² = 0.74; Booting and Heading stages) and plant height (R² = 0.68; Heading stage). Best results to estimate biophysical variables were observed for spectral measurements acquired between Tillering II and Heading stages.


2008 ◽  
Author(s):  
Christian Weber ◽  
Daniel C. Schinca ◽  
Jorge O. Tocho ◽  
Fabian Videla ◽  
Niklaus Ursus Wetter ◽  
...  

Author(s):  
Edward G. Bartick ◽  
John A. Reffner

Since the introduction of commercial Fourier transform infrared (FTIR) microscopic systems in 1983, IR microscopy has developed as an important analytical tool in research, industry and forensic analysis. Because of the frequent encounter of small quantities of physical evidence found at crime scenes, spectroscopic IR microscopes have proven particularly valuable for forensic applications. Transmittance and reflectance measurements have proven very useful. Reflection-absorption, specular reflection, and diffuse reflection have all been applied. However, it has been only very recently that an internal reflection (IRS) objective has been commercially introduced.The IRS method, also known as attenuated total reflection (ATR), has proven very useful for IR analysis of standard size samples. The method has been applied to adhesive tapes, plastic explosives, and general applications in the analysis of opaque materials found as evidence. The small quantities or uncontaminated areas of specimens frequently found requiring forensic analysis will often be directly applicable to microscopic IRS analysis.


Sign in / Sign up

Export Citation Format

Share Document