Management of thermal effects in high average power pulsed optical parametric oscillators

Author(s):  
A. Godard ◽  
M. Raybaut ◽  
T. Schmid ◽  
M. Lefebvre ◽  
A.-M. Michel ◽  
...  
2018 ◽  
Vol 35 (12) ◽  
pp. C57 ◽  
Author(s):  
Biplob Nandy ◽  
S. Chaitanya Kumar ◽  
J. Canals Casals ◽  
Hanyu Ye ◽  
M. Ebrahim-Zadeh

2005 ◽  
Vol 12 (4) ◽  
pp. 307-312 ◽  
Author(s):  
Qinjun Peng ◽  
Xiaodong Yang ◽  
Xuejun Wang ◽  
Aicong Geng ◽  
Aiyun Yao ◽  
...  

2010 ◽  
Vol 35 (21) ◽  
pp. 3667 ◽  
Author(s):  
Antoine Godard ◽  
Myriam Raybaut ◽  
Thomas Schmid ◽  
Michel Lefebvre ◽  
Anne-Marie Michel ◽  
...  

2013 ◽  
Vol 38 (5) ◽  
pp. 763 ◽  
Author(s):  
Jan Rothhardt ◽  
Stefan Demmler ◽  
Steffen Hädrich ◽  
Thomas Peschel ◽  
Jens Limpert ◽  
...  

2008 ◽  
Vol 94 (3) ◽  
pp. 411-427 ◽  
Author(s):  
M. Vainio ◽  
J. Peltola ◽  
S. Persijn ◽  
F. J. M. Harren ◽  
L. Halonen

Optics ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 96-102
Author(s):  
Ewan Allan ◽  
Craig Ballantine ◽  
Sebastian C. Robarts ◽  
David Bajek ◽  
Richard A. McCracken

Fiber-feedback optical parametric oscillators (OPOs) incorporate intracavity fibers to provide a compact high-energy wavelength-tunable laser platform; however, dispersive effects can limit operation to the sub-picosecond regime. In this research article, we modeled pulse propagation through systems of cascaded fibers, incorporating SMF-28 and ultra-high numerical aperture (UHNA) fibers with complementary second-order dispersion coefficients. We found that the pulse duration upon exiting the fiber system is dominated by uncompensated third-order effects, with UHNA7 presenting the best opportunity to realise a cascaded-fiber-feedback OPO.


Sign in / Sign up

Export Citation Format

Share Document