Enhanced photon absorption of Ge-on-Si avalanche photodiode with photon-trapping microstructure

Author(s):  
Shaoteng Wu ◽  
Hao Zhou ◽  
Lin Zhang ◽  
Qimiao Chen ◽  
Liangxing Hu ◽  
...  
2020 ◽  
Author(s):  
Guangjian Xu ◽  
Xinyi Ren ◽  
Qucheng Miao ◽  
Ming Yan ◽  
Haifeng Pan ◽  
...  

Abstract The study of non-linear interactions in semiconductor photo-electronic devices to achieve effective and fast photon identification is an ongoing and important task. We investigated the specific contribution of degenerate and non-degenerate two-photon absorption (D-TPA and ND-TPA) response in silicon avalanche photodiode (Si-APD) for infrared photon detection at room temperature. We experimentally demonstrated that when the two laser pulses overlapped, the average D-TPA quantum detection efficiencies at 1800 nm, and that at 1550 nm were measured as 3.3×10 -16 counts•pulse/photon 2 , 4.3×10 -15 counts•pulse/photon 2 , respectively. And the ND-TPA quantum detection efficiency of 1800 nm and 1550 nm was measured to be 7.9×10 -16 counts•pulse/photon 2 . This study provides a solution for the practical infrared photon detection devices based on TPA effect in Si-APDs.


Sign in / Sign up

Export Citation Format

Share Document