Maximally Informative Point Spread Functions for 3D Super-Resolution Imaging

CLEO: 2015 ◽  
2015 ◽  
Author(s):  
Yoav Shechtman ◽  
Steffen J. Sahl ◽  
Adam S. Backer ◽  
W. E. Moerner
Photonics ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 64
Author(s):  
Haitang Yang ◽  
George V. Eleftheriades

Recently, the super-oscillation phenomenon has attracted attention because of its ability to super-resolve unlabelled objects in the far-field. Previous synthesis of super-oscillatory point-spread functions used the Chebyshev patterns where all sidelobes are equal. In this work, an approach is introduced to generate super-oscillatory Taylor-like point-spread functions that have tapered sidelobes. The proposed method is based on the Schelkunoff’s super-directive antenna theory. This approach enables the super-resolution, the first sidelobe level and the tapering rate of the sidelobes to be controlled. Finally, we present the design of several imaging experiments using a spatial light modulator as an advanced programmable grating to form the Taylor-like super-oscillatory point-spread functions and demonstrate their superiority over the Chebyshev ones in resolving the objects of two apertures and of a mask with the letter E.


Author(s):  
Ginni Grover ◽  
Keith DeLuca ◽  
Sean Quirin ◽  
Jennifer DeLuca ◽  
Rafael Piestun

2017 ◽  
Author(s):  
Anna-Karin Gustavsson ◽  
Petar N. Petrov ◽  
Maurice Y. Lee ◽  
Yoav Shechtman ◽  
W. E. Moerner

Tilted light sheet microscopy with 3D point spread functions (TILT3D) combines a novel, tilted light sheet illumination strategy with long axial range point spread functions (PSFs) for low-background, 3D super-localization of single molecules as well as 3D super-resolution imaging in thick cells. Because the axial positions of the single emitters are encoded in the shape of each single-molecule image rather than in the position or thickness of the light sheet, the light sheet need not be extremely thin. TILT3D is built upon a standard inverted microscope and has minimal custom parts. The result is simple and flexible 3D super-resolution imaging with tens of nm localization precision throughout thick mammalian cells. We validated TILT3D for 3D super-resolution imaging in mammalian cells by imaging mitochondria and the full nuclear lamina using the double-helix PSF for single-molecule detection and the recently developed Tetrapod PSFs for fiducial bead tracking and live axial drift correction.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Bo Shuang ◽  
Wenxiao Wang ◽  
Hao Shen ◽  
Lawrence J. Tauzin ◽  
Charlotte Flatebo ◽  
...  

2014 ◽  
Vol 141 (6) ◽  
pp. 577-585 ◽  
Author(s):  
Mathew H. Horrocks ◽  
Matthieu Palayret ◽  
David Klenerman ◽  
Steven F. Lee

Photonics ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 522
Author(s):  
Guomian Lv ◽  
Hao Xu ◽  
Huajun Feng ◽  
Zhihai Xu ◽  
Hao Zhou ◽  
...  

The novel rotating rectangular aperture (RRA) system provides a good solution for space-based, large-aperture, high-resolution imaging tasks. Its imaging quality depends largely on the image synthesis algorithm, and the mainstream multi-frame deblurring approach is sophisticated and time-consuming. In this paper, we propose a novel full-aperture image synthesis algorithm for the RRA system, based on Fourier spectrum restoration. First, a numerical simulation model is established to analyze the RRA system’s characteristics and obtain the point spread functions (PSFs) rapidly. Then, each image is used iteratively to calculate the increment size and update the final restored Fourier spectrum. Both the simulation’s results and the practical experiment’s results show that our algorithm performs well in terms of objective evaluation and time consumption.


Sign in / Sign up

Export Citation Format

Share Document