oscillation phenomenon
Recently Published Documents


TOTAL DOCUMENTS

132
(FIVE YEARS 20)

H-INDEX

21
(FIVE YEARS 3)

MAUSAM ◽  
2021 ◽  
Vol 51 (2) ◽  
pp. 163-168
Author(s):  
R. P. KANE

The 12-monthly running means of N2O measured at seven locations during 1977-91 were used for obtaining the yearly percentage growth rate series (4 values per year, centered 3 months apart), which were subjected to MESA (Maximum Entropy Spectral Analysis). The spectra revealed significant QBO and QTO (Quasi-biennial and Quasi-triennial oscillations) with QBO periods in the range (2.04-2.38) years and QTO periods near 4.0 years. These do not resemble the QBO of 2.58 years of the 50 hPa low latitude wnal wind but do resemble the QBO of 2.31 years and the 4.1 year periods of the Southern oscillation phenomenon, represented by Tahiti minus Darwin sea level atmospheric pressure difference (T-D).


MAUSAM ◽  
2021 ◽  
Vol 59 (2) ◽  
pp. 195-210
Author(s):  
K. SEETHARAM

Indian summer monsoon rainfall exhibits inter-seasonal variations in the time scales of 2-7 years which are linked to quasi-biennial oscillations and El nino-Southern Oscillation phenomenon and also intra-seasonal variations in the time-scale of 30-60 days which are linked to activity of MJO which emerged as a dominant mode of intra-seasonal oscillations of Indian summer monsoon rainfall in addition to the other modes of low frequency oscillations. In this scenario, the inter and intra seasonal variability of 29 meteorological sub-divisional rainfalls has been investigated by correlating the MJO indices at 10 different longitudes covering Indian, Pacific and Atlantic Oceans with cumulative sub-divisional summer monsoon rainfall (1979 – 2000). The results were discussed.


MAUSAM ◽  
2021 ◽  
Vol 57 (4) ◽  
pp. 597-608
Author(s):  
R. P. KANE

lkj & o"kZ 1900&2000 dh vof/k esa vVykafVd egklkxj dh rwQkuh xfrfof/k ¼ftUgas rwQku] izpaM rwQku] vkfn uke fn, x, gaS½ ds fofHkUu lwpdkadksa ds dky Jsf.k;ksa dk vuqØe fo’ys"k.k ,e-b-,e-¼vf/kdre ,uVªkWih fof/k½ }kjk rFkk mldh vkofrZrk ds vk;ke ,e- vkj- ,- ¼cgqq lekJ;.k fo’ys"k.k½ }kjk izkIr fd, x, gaSA fiNys dqN o"kksZa ds vkadM+ksa ¼o"kZ 1950 ls vkxss½ ds vuqlkj budh egRoiw.kZ vkofrZrk,¡ n’kd lfgr( f}okf"kZd dYi] f=okf"kZd dYi {ks=ksa rFkk buls mPp {ks=ksa esa Hkh jghA 2-40 o"kkasZ esa 50 feyhckj ds fuEu v{kka’k {ks=h; iou vkSj 2-40 ,oa 2-85 o"kkasZ ds b- ,u- ,l- vks- ¼,y uhuks/nf{k.kh nksyu½ ?kVuk ds ln`’k f}o"khZ dYi nksyu {ks= esa ¼3&4 o"kkasZ½ rwQku lwpdkad 2-40 rFkk 2-85 o"kksZa ds djhc pje ij jgsA mPp vkofrZrk okys {ks=ksa esa rwQku lwpdkad 4-5&5-5-] 8&9] 11&12 rFkk 14&15 o"kkasZ esa pje ij jgs tcfd b- ,u- ,l- vks- 7-4 ,oa 12&14 o"kksZa esa pje ij jgsA cgq n’kdh; Js.kh esa 28&34]40]50&53]61&63]~70 ,oa ~80 o"kksZa esa ¼ijUrq fHkUu lwpdkadksa ds fy, fHkUu&fHkUu½ rwQku pje ij jgs tks LFky ,oa leqnzh lrg ds rkiekuksa ds leku pje ekuksa ds vuq:Ik jgsA dqy lwpdkadksa esa 90 o"kkZsa esa yxHkx 50 izfr’kr dh m/oZ izo`fr jghA     The time series of the various indices of Atlantic storm activity (number of named storms, hurricanes, etc.) for 1900-2000 were subjected to spectral analysis by MEM (Maximum Entropy Method) and amplitudes of the periodicities were obtained by MRA (Multiple Regression Analysis).  For recent data (1950 onwards), significant periodicities were in the quasi-biennial, quasi-triennial regions and also in higher regions, including decadal. In the QBO region (2-3 years), storm indices had peaks near 2.40 and 2.85 years, similar to 2.40 years of 50 hPa low latitude zonal wind and 2.40 and 2.85 years of ENSO (El Niño/Southern Oscillation) phenomenon. In the QTO region (3-4 years), storm indices and ENSO had common peaks near 3.5 years. In higher periodicity regions, storm indices had peaks at 4.5-5.5, 8-9, 11-12 and 14-15 years, while ENSO had peaks at 7.4 and 12-14 years. In the multi-decadal range, storm peaks were at 28-34, 40, 50-53, 61-63, ~70 and ~80 years (but different for different indices), which matched with similar peaks in land and sea surface temperatures. Some indices had large uptrends, ~50% in 90 years.


Author(s):  
Longkai Lu ◽  
Dengke Ma ◽  
Ming Zhong ◽  
Lifa Zhang

Abstract Thermal transport properties and thermodynamic quantities often present anomalous behaviors in low-dimensional systems. In this paper, we find that temperature oscillates spatially in one dimensional harmonic and weakly anharmonic superlattice. With the increase of anharmonicity, the temperature oscillation gradually disappears and a normal temperature gradient forms. Further analysis reveals that the formation of temperature oscillation is due to the localization of high frequency phonons which cannot be thermalized. Moreover, the localized modes interact weakly with heat reservoirs, thus, their contributions to local temperature remain negligible while varying the temperatures of heat reservoirs. The oscillated temperature profile is in a good agreement with Visscher's formula. These discoveries of temperature oscillation phenomenon have great potential in applications of phononic devices for heat manipulation.


Firefly algorithm is a meta-heuristic stochastic search algorithm with strong robustness and easy implementation. However, it also has some shortcomings, such as the "oscillation" phenomenon caused by too many attractions, which makes the convergence speed is too slow or premature. In the original FA, the full attraction model makes the algorithm consume a lot of evaluation times, and the time complexity is high. Therefore, In this paper, a novel firefly algorithm (EMDmFA) based on Euclidean metric (EM) and dimensional mutation (DM) is proposed. The EM strategy makes the firefly learn from its nearest neighbors. When the firefly is better than its neighbors, it learns from the best individuals in the population. It improves the FA attraction model and dramatically reduces the computational time complexity. At the same time, DM strategy improves the ability of the algorithm to jump out of the local optimum. The experimental results show that the proposed EMDmFA significantly improves the accuracy of the solution and better than most state-of-the-art FA variants.


2021 ◽  
Vol 2021 ◽  
pp. 1-25
Author(s):  
Qiang Liu ◽  
Lin-jing Xiao

In this paper, the 5000 m mining pipe is taken as the research object, and the transverse and longitudinal vibration laws of the pipe under different working conditions are analyzed. Based on the finite element method (FEM), the pipe is discretized and calculated by the Wilson-θ Wilson - θ integral method; finally, the corresponding vibration laws of the mining pipe are obtained. The research shows that the mining pipe vibration responses are irregular motion, with the obvious oscillation phenomenon, and the overall vibration trend decreases first and then increases from the top to the bottom; the maximum vibration response occurs at the pipe top. Under the same working conditions, increasing the towing velocity will decrease the overall longitudinal vibration amplitude and increase the overall transverse vibration amplitude. While the ore bin weight will increase the longitudinal vibration amplitude and decrease the transverse vibration amplitude, increasing the mining pipe large diameter stepped section length and damping will decrease the longitudinal and transverse vibration simultaneously. When the towing velocity is between 0–2.8 m/s, the longitudinal vibration intensity is large, which is the main vibration mode. When the towing velocity is 2.8 m/s, the critical point is reached, and the longitudinal and transverse vibrations have the same intensity. When the towing velocity is greater than 2.8 m/s, the transverse vibration intensity is gradually greater than the longitudinal vibration intensity; at this time, the control of the transverse vibration should be appropriately increased.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Haifan Du ◽  
Haiwen Duan

This paper combines domestic and international research results to analyze and study the difference between the attribute features of English phrase speech and noise to enhance the short-time energy, which is used to improve the threshold judgment sensitivity; noise addition to the discrepancy data set is used to enhance the recognition robustness. The backpropagation algorithm is improved to constrain the range of weight variation, avoid oscillation phenomenon, and shorten the training time. In the real English phrase sound recognition system, there are problems such as massive training data and low training efficiency caused by the super large-scale model parameters of the convolutional neural network. To address these problems, the NWBP algorithm is based on the oscillation phenomenon that tends to occur when searching for the minimum error value in the late training period of the network parameters, using the K-MEANS algorithm to obtain the seed nodes that approach the minimal error value, and using the boundary value rule to reduce the range of weight change to reduce the oscillation phenomenon so that the network error converges as soon as possible and improve the training efficiency. Through simulation experiments, the NWBP algorithm improves the degree of fitting and convergence speed in the training of complex convolutional neural networks compared with other algorithms, reduces the redundant computation, and shortens the training time to a certain extent, and the algorithm has the advantage of accelerating the convergence of the network compared with simple networks. The word tree constraint and its efficient storage structure are introduced, which improves the storage efficiency of the word tree constraint and the retrieval efficiency in the English phrase recognition search.


Photonics ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 64
Author(s):  
Haitang Yang ◽  
George V. Eleftheriades

Recently, the super-oscillation phenomenon has attracted attention because of its ability to super-resolve unlabelled objects in the far-field. Previous synthesis of super-oscillatory point-spread functions used the Chebyshev patterns where all sidelobes are equal. In this work, an approach is introduced to generate super-oscillatory Taylor-like point-spread functions that have tapered sidelobes. The proposed method is based on the Schelkunoff’s super-directive antenna theory. This approach enables the super-resolution, the first sidelobe level and the tapering rate of the sidelobes to be controlled. Finally, we present the design of several imaging experiments using a spatial light modulator as an advanced programmable grating to form the Taylor-like super-oscillatory point-spread functions and demonstrate their superiority over the Chebyshev ones in resolving the objects of two apertures and of a mask with the letter E.


Sign in / Sign up

Export Citation Format

Share Document