Optical Cavity Quantum Electrodynamics: A Toolbox for Deterministic Quantum Information Science with Stationary Atoms and Flying Photons

Author(s):  
G. Rempe ◽  
M. Hijlkema ◽  
A. Kuhn ◽  
H.P. Specht ◽  
B. Weber ◽  
...  
2012 ◽  
Author(s):  
Paul M. Alsing ◽  
Michael L. Fanto

2020 ◽  
Author(s):  
Cherie R. Kagan ◽  
Lee C. Bassett ◽  
Christopher B. Murray ◽  
Sarah M. Thompson

2015 ◽  
Vol 17 (46) ◽  
pp. 30805-30816 ◽  
Author(s):  
Cathal Smyth ◽  
Daniel G. Oblinsky ◽  
Gregory D. Scholes

Delocalization of a model light-harvesting complex is investigated using multipartite measures inspired by quantum information science.


Author(s):  
Jelena Vučković

Quantum dots in optical nanocavities are interesting as a test-bed for fundamental studies of light–matter interaction (cavity quantum electrodynamics, QED), as well as an integrated platform for information processing. As a result of the strong field localization inside sub-cubic-wavelength volumes, these dots enable very large emitter–field interaction strengths. In addition to their use in the study of new regimes of cavity QED, they can also be employed to build devices for quantum information processing, such as ultrafast quantum gates, non-classical light sources, and spin–photon interfaces. Beside quantum information systems, many classical information processing devices, such as lasers and modulators, benefit greatly from the enhanced light–matter interaction in such structures. This chapter gives an introduction to quantum dots, photonic crystal resonators, cavity QED, and quantum optics on this platform, as well as possible device applications.


Sign in / Sign up

Export Citation Format

Share Document