Properties of resonant photonic lattices at the lattice-particle Mie scattering wavelength

Author(s):  
Nasrin Razmjooei ◽  
Robert Magnusson
1984 ◽  
Vol 75 ◽  
pp. 607-613 ◽  
Author(s):  
Kevin D. Pang ◽  
Charles C. Voge ◽  
Jack W. Rhoads

Abstract.All observed optical and infrared properties of Saturn's E-ring can be explained in terms of Mie scattering by a narrow size distribution of ice spheres of 2 - 2.5 micron diameter. The spherical shape of the ring particles and their narrow size distribution imply a molten (possibly volcanic) origin on Enceladus. The E-ring consists of many layers, possibly stratified by electrostatic levitation.


2003 ◽  
Vol 123 (10) ◽  
pp. 1714-1720 ◽  
Author(s):  
Tetsuo Fukuchi ◽  
Takuya Nayuki ◽  
Takashi Fujii ◽  
Koshichi Nemoto

1987 ◽  
Vol 52 (6) ◽  
pp. 1397-1406
Author(s):  
František Zrcek ◽  
Milan Horák

A model of remote detection of molecular air pollutants is devised based on the lidar equation. The various kinds of interaction of radiation with matter, viz. absorption, induced fluorescence, and Raman scattering, are taken into account; detection of either scattered or reflected signal is considered. The reflection is assumed to be either axial, using a retroreflector, or omnidirectional from a field target. Based on this model, an algorithm was set up for simulation of the different variants of the experiment, making allowance for a generally variable concentration of the compound along the optical pathway of the light beam. The basic atmospheric processes, viz. radiation absorption by the backround, heat emission, turbulence, and the effect of atmospheric aerosols, are treated, and the last of them is found to play the major role. Aerosols are looked upon as a source of the Mie scattering and they are described by distribution equations with respect to the particle size and the complex refractive index. The variable concentration of the aerosol along the optical pathway and the simultaneous effect of a higher numberof aerosol types are included.


2020 ◽  
Vol 499 (2) ◽  
pp. 1531-1560
Author(s):  
Christer Sandin ◽  
Lars Mattsson

ABSTRACT Stellar winds of cool carbon stars enrich the interstellar medium with significant amounts of carbon and dust. We present a study of the influence of two-fluid flow on winds where we add descriptions of frequency-dependent radiative transfer (RT). Our radiation hydrodynamic models in addition include stellar pulsations, grain growth and ablation, gas-to-dust drift using one mean grain size, dust extinction based on both the small particle limit (SPL) and Mie scattering, and an accurate numerical scheme. We calculate models at high spatial resolution using 1024 gridpoints and solar metallicities at 319 frequencies, and we discern effects of drift by comparing drift models to non-drift models. Our results show differences of up to 1000 per cent in comparison to extant results. Mass-loss rates and wind velocities of drift models are typically, but not always, lower than in non-drift models. Differences are larger when Mie scattering is used instead of the SPL. Amongst other properties, the mass-loss rates of the gas and dust, dust-to-gas density ratio, and wind velocity show an exponential dependence on the dust-to-gas speed ratio. Yields of dust in the least massive winds increase by a factor 4 when drift is used. We find drift velocities in the range $10\!-\!67\, \mbox{km}\, \mbox{s}^{-1}$, which is drastically higher than in our earlier works that use grey RT. It is necessary to include an estimate of drift velocities to reproduce high yields of dust and low wind velocities.


2021 ◽  
Vol 103 (3) ◽  
Author(s):  
Ricardo Román-Ancheyta ◽  
Barış Çakmak ◽  
Roberto de J. León-Montiel ◽  
Armando Perez-Leija

Author(s):  
Shigehiro Takasaka ◽  
Koichi Maeda ◽  
Ryuichi Sugizaki ◽  
Yoshihiro Arashitani

Author(s):  
Taejun Lee ◽  
Joohoon Kim ◽  
Ishwor Koirala ◽  
Younghwan Yang ◽  
Trevon Badloe ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document